Xing-Hua Xia

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2313606/publications.pdf

Version: 2024-02-01

355 23,802 69 139 g-index

363 363 363 363 26018

times ranked

citing authors

docs citations

all docs

#	Article	IF	CITATIONS
1	Catalyst-Free Synthesis of Nitrogen-Doped Graphene <i>via</i> Thermal Annealing Graphite Oxide with Melamine and Its Excellent Electrocatalysis. ACS Nano, 2011, 5, 4350-4358.	7.3	2,341
2	A Green Approach to the Synthesis of Graphene Nanosheets. ACS Nano, 2009, 3, 2653-2659.	7.3	2,115
3	Synthesis of boron doped graphene for oxygen reduction reaction in fuel cells. Journal of Materials Chemistry, 2012, 22, 390-395.	6.7	790
4	Energy Level Engineering of MoS ₂ by Transition-Metal Doping for Accelerating Hydrogen Evolution Reaction. Journal of the American Chemical Society, 2017, 139, 15479-15485.	6.6	713
5	Electrochemical sensor based on nitrogen doped graphene: Simultaneous determination of ascorbic acid, dopamine and uric acid. Biosensors and Bioelectronics, 2012, 34, 125-131.	5. 3	686
6	Hot Electron of Au Nanorods Activates the Electrocatalysis of Hydrogen Evolution on MoS ₂ Nanosheets. Journal of the American Chemical Society, 2015, 137, 7365-7370.	6.6	556
7	Hydrogen bubble dynamic template synthesis of porous gold for nonenzymatic electrochemical detection of glucose. Electrochemistry Communications, 2007, 9, 981-988.	2.3	477
8	Electronic metal–support interaction modulates single-atom platinum catalysis for hydrogen evolution reaction. Nature Communications, 2021, 12, 3021.	5.8	397
9	Controllable Deposition of Platinum Nanoparticles on Graphene As an Electrocatalyst for Direct Methanol Fuel Cells. Journal of Physical Chemistry C, 2011, 115, 15639-15645.	1.5	391
10	Superhydrophobicity of 3D Porous Copper Films Prepared Using the Hydrogen Bubble Dynamic Template. Chemistry of Materials, 2007, 19, 5758-5764.	3.2	313
11	A facile approach to the synthesis of highly electroactive Pt nanoparticles on graphene as an anode catalyst for direct methanol fuel cells. Chemical Communications, 2010, 46, 5951.	2.2	301
12	Peroxidase-like activity of water-soluble cupric oxide nanoparticles and its analytical application for detection of hydrogen peroxide and glucose. Analyst, The, 2012, 137, 1706.	1.7	287
13	Citrate-Capped Platinum Nanoparticle as a Smart Probe for Ultrasensitive Mercury Sensing. Analytical Chemistry, 2014, 86, 10955-10960.	3.2	248
14	Nonenzymatic Glucose Detection by Using a Three-Dimensionally Ordered, Macroporous Platinum Template. Chemistry - A European Journal, 2005, 11, 2177-2182.	1.7	243
15	Synthesis, Characterization, and Immobilization of Prussian Blue-Modified Au Nanoparticles:Â Application to Electrocatalytic Reduction of H2O2. Langmuir, 2007, 23, 2133-2137.	1.6	216
16	Adsorption of water at $Pt(111)$ electrode in HClO4 solutions. The potential of zero charge. Journal of Electroanalytical Chemistry, 1996, 411, 95-102.	1.9	214
17	Fabrication of Water-Soluble, Green-Emitting Gold Nanoclusters with a 65% Photoluminescence Quantum Yield via Host–Guest Recognition. Chemistry of Materials, 2017, 29, 1362-1369.	3.2	209
18	Direct Plasmon-Accelerated Electrochemical Reaction on Gold Nanoparticles. ACS Nano, 2017, 11, 5897-5905.	7.3	208

#	Article	IF	CITATIONS
19	Bioinspired copper catalyst effective for both reduction and evolution of oxygen. Nature Communications, 2014, 5, 5285.	5.8	202
20	Chitosan-stabilized platinum nanoparticles as effective oxidase mimics for colorimetric detection of acid phosphatase. Nanoscale, 2017, 9, 10292-10300.	2.8	187
21	In situ formation of molecular Ni-Fe active sites on heteroatom-doped graphene as a heterogeneous electrocatalyst toward oxygen evolution. Science Advances, 2018, 4, eaap7970.	4.7	176
22	Fluorescent hydrogen peroxide sensor based on cupric oxide nanoparticles and its application for glucose and l-lactate detection. Biosensors and Bioelectronics, 2014, 61, 374-378.	5.3	158
23	In Situ Fabrication of Ultrasmall Gold Nanoparticles/2D MOFs Hybrid as Nanozyme for Antibacterial Therapy. Small, 2020, 16, e2000553.	5.2	155
24	Gold nanoparticles integrated in a nanotube array for electrochemical detection of glucose. Electrochemistry Communications, 2009, 11, 216-219.	2.3	153
25	Electrogenerated Chemiluminescence Imaging of Electrocatalysis at a Single Auâ€Pt Janus Nanoparticle. Angewandte Chemie - International Edition, 2018, 57, 4010-4014.	7.2	145
26	Lanthanide-based metal-organic framework nanosheets with unique fluorescence quenching properties for two-color intracellular adenosine imaging in living cells. NPG Asia Materials, 2017, 9, e354-e354.	3.8	144
27	Facile Method To Fabricate a Large-Scale Superhydrophobic Surface by Galvanic Cell Reaction. Chemistry of Materials, 2006, 18, 1365-1368.	3.2	138
28	A Nanochannel Array-Based Electrochemical Device for Quantitative Label-free DNA Analysis. ACS Nano, 2010, 4, 6417-6424.	7.3	134
29	Ultrasensitive Capture, Detection, and Release of Circulating Tumor Cells Using a Nanochannel–lon Channel Hybrid Coupled with Electrochemical Detection Technique. Analytical Chemistry, 2017, 89, 10957-10964.	3.2	132
30	Site-specific electrodeposition enables self-terminating growth of atomically dispersed metal catalysts. Nature Communications, 2020, 11, 4558.	5.8	131
31	Porous Anodic Alumina with Continuously Manipulated Pore/Cell Size. ACS Nano, 2008, 2, 959-965.	7.3	126
32	Enhanced chemiluminescence of the luminol-hydrogen peroxide system by colloidal cupric oxide nanoparticles as peroxidase mimic. Talanta, 2012, 99, 643-648.	2.9	125
33	Solutionâ€pHâ€Modulated Rectification of Ionic Current in Highly Ordered Nanochannel Arrays Patterned with Chemical Functional Groups at Designed Positions. Advanced Functional Materials, 2013, 23, 3836-3844.	7.8	125
34	Multistage Coloring Electrochromic Device Based on TiO ₂ Nanotube Arrays Modified with WO ₃ Nanoparticles. Advanced Functional Materials, 2011, 21, 1941-1946.	7.8	123
35	A label-free amperometric immunosensor based on biocompatible conductive redox chitosan-ferrocene/gold nanoparticles matrix. Biosensors and Bioelectronics, 2009, 25, 852-857.	5.3	121
36	Simultaneous voltammetric determination of norepinephrine, ascorbic acid and uric acid on polycalconcarboxylic acid modified glassy carbon electrode. Biosensors and Bioelectronics, 2008, 23, 1488-1495.	5.3	118

#	Article	IF	CITATIONS
37	Ultrasensitive Detection of Bacteria Using a 2D MOF Nanozyme-Amplified Electrochemical Detector. Analytical Chemistry, 2021, 93, 8544-8552.	3.2	117
38	Methionine-directed fabrication of gold nanoclusters with yellow fluorescent emission for Cu2+ sensing. Biosensors and Bioelectronics, 2015, 65, 397-403.	5.3	116
39	Colorimetric detection of urea, urease, and urease inhibitor based on the peroxidase-like activity of gold nanoparticles. Analytica Chimica Acta, 2016, 915, 74-80.	2.6	113
40	Two-step pyrolysis process to synthesize highly dispersed Pt–Ru/carbon nanotube catalysts for methanol electrooxidation. Carbon, 2006, 44, 61-66.	5.4	111
41	One-Step Immobilization of Glucose Oxidase in a Silica Matrix on a Pt Electrode by an Electrochemically Induced Solâ^'Gel Process. Langmuir, 2007, 23, 11896-11900.	1.6	106
42	Early Stages during the Oxidation of HCOOH on Single-Crystal Pt Electrodes As Characterized by Infrared Spectroscopy. Langmuir, 1996, 12, 4260-4265.	1.6	101
43	Facile preparation of magnetic core–shell Fe3O4@Au nanoparticle/myoglobin biofilm for direct electrochemistry. Biosensors and Bioelectronics, 2010, 25, 1447-1453.	5.3	98
44	Choline and acetylcholine detection based on peroxidase-like activity and protein antifouling property of platinum nanoparticles in bovine serum albumin scaffold. Biosensors and Bioelectronics, 2014, 62, 331-336.	5.3	98
45	Platinum nanoparticles/graphene-oxide hybrid with excellent peroxidase-like activity and its application for cysteine detection. Analyst, The, 2015, 140, 5251-5256.	1.7	95
46	Self-cascade reaction catalyzed by CuO nanoparticle-based dual-functional enzyme mimics. Biosensors and Bioelectronics, 2017, 97, 21-25.	5.3	91
47	Low Power Single Laser Activated Synergistic Cancer Phototherapy Using Photosensitizer Functionalized Dual Plasmonic Photothermal Nanoagents. ACS Nano, 2019, 13, 2544-2557.	7.3	89
48	pH-Sensitive gold nanoclusters: preparation and analytical applications for urea, urease, and urease inhibitor detection. Chemical Communications, 2015, 51, 7847-7850.	2.2	88
49	Direct Plasmon-Enhanced Electrochemistry for Enabling Ultrasensitive and Label-Free Detection of Circulating Tumor Cells in Blood. Analytical Chemistry, 2019, 91, 4413-4420.	3.2	88
50	Synthesis of graphitic carbon nitride through pyrolysis of melamine and its electrocatalysis for oxygen reduction reaction. Chinese Chemical Letters, 2013, 24, 103-106.	4.8	87
51	A simple, disposable microfluidic device for rapid protein concentration and purification via direct-printing. Lab on A Chip, 2008, 8, 1496.	3.1	86
52	Electrochemically deposited nanocomposite film of CS-Fc/Au NPs/GOx for glucose biosensor application. Biosensors and Bioelectronics, 2009, 24, 2920-2925.	5.3	85
53	A Waterâ€Soluble Cu Complex as Molecular Catalyst for Electrocatalytic CO ₂ Reduction on Grapheneâ€Based Electrodes. Advanced Energy Materials, 2019, 9, 1803151.	10.2	85
54	Simple Approach for Efficient Encapsulation of Enzyme in Silica Matrix with Retained Bioactivity. Analytical Chemistry, 2009, 81, 3478-3484.	3.2	83

#	Article	IF	Citations
55	Determination of Explosives Using Electrochemically Reduced Graphene. Chemistry - an Asian Journal, 2011, 6, 1210-1216.	1.7	83
56	Immobilization and catalytic activity of horseradish peroxidase on molybdenum disulfide nanosheets modified electrode. Electrochemistry Communications, 2013, 35, 146-148.	2.3	82
57	Elimination of electrochemical interferences in glucose biosensors. TrAC - Trends in Analytical Chemistry, 2010, 29, 306-318.	5.8	81
58	Insight into the Unique Fluorescence Quenching Property of Metal-Organic Frameworks upon DNA Binding. Analytical Chemistry, 2017, 89, 11366-11371.	3.2	81
59	Redox Recycling-Triggered Peroxidase-Like Activity Enhancement of Bare Gold Nanoparticles for Ultrasensitive Colorimetric Detection of Rare-Earth Ce ³⁺ Ion. Analytical Chemistry, 2019, 91, 4039-4046.	3.2	80
60	Asymmetric Nanochannel–Ionchannel Hybrid for Ultrasensitive and Label-Free Detection of Copper Ions in Blood. Analytical Chemistry, 2018, 90, 896-902.	3.2	79
61	Three-Dimensionally Ordered Macroporous Gold Structure as an Efficient Matrix for Solid-State Electrochemiluminescence of Ru(bpy) ₃ ²⁺ /TPA System with High Sensitivity. Journal of Physical Chemistry C, 2007, 111, 12213-12219.	1.5	77
62	Electrochromic-Tuned Plasmonics for Photothermal Sterile Window. ACS Nano, 2018, 12, 6895-6903.	7.3	76
63	High-Performance Ru@C ₄ N Electrocatalyst for Hydrogen Evolution Reaction in Both Acidic and Alkaline Solutions. ACS Applied Materials & Samp; Interfaces, 2019, 11, 19176-19182.	4.0	76
64	Facile electrochemiluminescence sensing platform based on high-quantum-yield gold nanocluster probe for ultrasensitive glutathione detection. Biosensors and Bioelectronics, 2018, 105, 71-76.	5 . 3	74
65	Graphene–Ruthenium(II) Complex Composites for Sensitive ECL Immunosensors. Small, 2014, 10, 706-716.	5.2	72
66	Fabrication of Bioâ€Inspired 2D MOFs/PAA Hybrid Membrane for Asymmetric Ion Transport. Advanced Functional Materials, 2020, 30, 1908804.	7.8	72
67	Hollow Core–Shell Structured Ni–Sn@C Nanoparticles: A Novel Electrocatalyst for the Hydrogen Evolution Reaction. ACS Applied Materials & Samp; Interfaces, 2015, 7, 9098-9102.	4.0	71
68	Dendrimer-Au Nanoparticle Network Covered Alumina Membrane for Ion Rectification and Enhanced Bioanalysis. Nano Letters, 2020, 20, 1846-1854.	4.5	71
69	Photochemical synthesis of Prussian blue film from an acidic ferricyanide solution and application. Electrochemistry Communications, 2005, 7, 1252-1256.	2.3	69
70	Anomalous Diffusion of Electrically Neutral Molecules in Charged Nanochannels. Angewandte Chemie - International Edition, 2010, 49, 7943-7947.	7.2	69
71	Determination, characterization and cytotoxicity on HELF cells of ZnO nanoparticles. Colloids and Surfaces B: Biointerfaces, 2010, 76, 145-150.	2.5	69
72	Highly Efficient Capture and Electrochemical Release of Circulating Tumor Cells by Using Aptamers Modified Gold Nanowire Arrays. ACS Applied Materials & Samp; Interfaces, 2017, 9, 34706-34714.	4.0	69

#	Article	IF	Citations
73	Bioinspired Engineering of Cobalt-Phosphonate Nanosheets for Robust Hydrogen Evolution Reaction. ACS Catalysis, 2018, 8, 3895-3902.	5.5	69
74	Polyallylamine-directed green synthesis of platinum nanocubes. Shape and electronic effect codependent enhanced electrocatalytic activity. Physical Chemistry Chemical Physics, 2013, 15, 3793.	1.3	68
75	Water-soluble gold nanoclusters prepared by protein-ligand interaction as fluorescent probe for real-time assay of pyrophosphatase activity. Biosensors and Bioelectronics, 2016, 83, 1-8.	5.3	67
76	Enhanced Peroxidaseâ€Like Performance of Gold Nanoparticles by Hot Electrons. Chemistry - A European Journal, 2017, 23, 6717-6723.	1.7	67
77	Characterization and Manipulation of the Electroosmotic Flow in Porous Anodic Alumina Membranes. Analytical Chemistry, 2005, 77, 8102-8108.	3.2	66
78	3-mercaptopropylphosphonic acid modified gold electrode for electrochemical detection of dopamine. Bioelectrochemistry, 2009, 75, 26-31.	2.4	66
79	Insight into Ion Transfer through the Subâ€Nanometer Channels in Zeolitic Imidazolate Frameworks. Angewandte Chemie - International Edition, 2017, 56, 4767-4771.	7.2	66
80	Biomimetic Nanochannel-Ionchannel Hybrid for Ultrasensitive and Label-Free Detection of MicroRNA in Cells. Analytical Chemistry, 2019, 91, 3582-3589.	3.2	66
81	Inorganic Nanomaterials with Intrinsic Singlet Oxygen Generation for Photodynamic Therapy. Advanced Science, 2021, 8, e2102587.	5.6	66
82	Semiconductor supported biomimetic superhydrophobic gold surfaces by the galvanic exchange reaction. Surface Science, 2006, 600, 38-42.	0.8	65
83	Electrochemical Nanostructuring with Ultrashort Voltage Pulses. Accounts of Chemical Research, 2001, 34, 371-377.	7.6	64
84	Versatile High-Performance Electrochemiluminescence ELISA Platform Based on a Gold Nanocluster Probe. ACS Applied Materials & Samp; Interfaces, 2019, 11, 24812-24819.	4.0	64
85	Aggregation-induced emission of luminol: a novel strategy for fluorescence ratiometric detection of ALP and As(<scp>v</scp>) with high sensitivity and selectivity. Chemical Communications, 2018, 54, 7487-7490.	2.2	63
86	KOH-activated nitrogen-doped graphene by means of thermal annealing for supercapacitor. Journal of Solid State Electrochemistry, 2013, 17, 1809-1814.	1.2	62
87	Synthesis of a hydrophilic poly-l-lysine/graphene hybrid through multiple non-covalent interactions for biosensors. Journal of Materials Chemistry B, 2013, 1, 1406.	2.9	62
88	Organic Cyanide Decorated SERS Active Nanopipettes for Quantitative Detection of Hemeproteins and Fe ³⁺ in Single Cells. Analytical Chemistry, 2017, 89, 2522-2530.	3.2	62
89	An ammonia-based etchant for attaining copper nanoclusters with green fluorescence emission. Nanoscale, 2018, 10, 6467-6473.	2.8	62
90	Gold nanocluster-based fluorescence turn-off probe for sensing of doxorubicin by photoinduced electron transfer. Sensors and Actuators B: Chemical, 2019, 296, 126656.	4.0	62

#	Article	IF	Citations
91	Study on the kinetics of homogeneous enzyme reactions in a micro/nanofluidics device. Lab on A Chip, 2010, 10, 639-646.	3.1	61
92	Low-loading cobalt coupled with nitrogen-doped porous graphene as excellent electrocatalyst for oxygen reduction reaction. Journal of Materials Chemistry A, 2014, 2, 9079.	5.2	61
93	Bare gold nanoparticles as facile and sensitive colorimetric probe for melamine detection. Analyst, The, 2012, 137, 5382.	1.7	59
94	Direct electrochemistry of cytochrome c on a graphene/poly (3,4-ethylenedioxythiophene) nanocomposite modified electrode. Electrochemistry Communications, 2012, 20, 1-3.	2.3	59
95	Morphology Controlled Poly(aminophenylboronic acid) Nanostructures as Smart Substrates for Enhanced Capture and Release of Circulating Tumor Cells. Advanced Functional Materials, 2015, 25, 6122-6130.	7.8	59
96	One-step formation of nanostructured gold layers via a galvanic exchange reaction for surface enhancement Raman scattering. Nanotechnology, 2006, 17, 651-657.	1.3	58
97	A colorimetric assay for sensitive detection of hydrogen peroxide and glucose in microfluidic paper-based analytical devices integrated with starch-iodide-gelatin system. Talanta, 2019, 200, 511-517.	2.9	58
98	A supramolecular photosensitizer derived from an Arene-Ru(II) complex self-assembly for NIR activated photodynamic and photothermal therapy. Nature Communications, 2022, 13, .	5.8	58
99	The room temperature electrochemical synthesis of N-doped graphene and its electrocatalytic activity for oxygen reduction. Chemical Communications, 2015, 51, 1198-1201.	2.2	57
100	Axial ligands tailoring the ORR activity of cobalt porphyrin. Science Bulletin, 2019, 64, 1158-1166.	4.3	57
101	Nanochannel–Ion Channel Hybrid Device for Ultrasensitive Monitoring of Biomolecular Recognition Events. Analytical Chemistry, 2019, 91, 1185-1193.	3.2	57
102	Nanopipette-Based SERS Aptasensor for Subcellular Localization of Cancer Biomarker in Single Cells. Analytical Chemistry, 2017, 89, 9911-9917.	3.2	56
103	Synergistically mediated enhancement of cathodic and anodic electrochemiluminescence of graphene quantum dots through chemical and electrochemical reactions of coreactants. Chemical Science, 2018, 9, 6080-6084.	3.7	55
104	Rational Design of High-Performance Donor–Linker–Acceptor Hybrids Using a Schiff Base for Enabling Photoinduced Electron Transfer. Analytical Chemistry, 2020, 92, 2019-2026.	3.2	54
105	Synthesis and Peroxidaseâ€Like Activity of Saltâ€Resistant Platinum Nanoparticles by Using Bovine Serum Albumin as the Scaffold. ChemCatChem, 2014, 6, 1543-1548.	1.8	53
106	Morpholino-Functionalized Nanochannel Array for Label-Free Single Nucleotide Polymorphisms Detection. Analytical Chemistry, 2015, 87, 3936-3941.	3.2	53
107	Plasmonic hot charge carriers activated Ni centres of metal–organic frameworks for the oxygen evolution reaction. Journal of Materials Chemistry A, 2019, 7, 10601-10609.	5.2	51
108	Galvanic Deposition of Nanostructured Noble-Metal Films on Silicon. Electrochemical and Solid-State Letters, 2005, 8, C148.	2.2	50

7

#	Article	IF	CITATIONS
109	One-step synthesis and catalytic properties of porous palladium nanospheres. Journal of Materials Chemistry, 2012, 22, 17604.	6.7	50
110	Selective glucose detection based on the concept of electrochemical depletion of electroactive species in diffusion layer. Biosensors and Bioelectronics, 2005, 20, 1366-1372.	5.3	49
111	Direct electrochemistry and electrocatalysis of hemoglobin at three-dimensional gold film electrode modified with self-assembled monolayers of 3-mercaptopropylphosphonic acid. Analytica Chimica Acta, 2009, 644, 83-89.	2.6	49
112	Colorimetric sensor based on dual-functional gold nanoparticles: Analyte-recognition and peroxidase-like activity. Food Chemistry, 2014, 147, 257-261.	4.2	49
113	Plasmonic Nanohybrid with High Photothermal Conversion Efficiency for Simultaneously Effective Antibacterial/Anticancer Photothermal Therapy. ACS Applied Bio Materials, 2019, 2, 3942-3953.	2.3	49
114	Oriented Self-Assembled Monolayer of Zn(II)-Tetraphenylporphyrin on TiO ₂ Electrode for Photoelectrochemical Analysis. Analytical Chemistry, 2019, 91, 2759-2767.	3.2	48
115	Fluorescent Sulfur-Tagged Europium(III) Coordination Polymers for Monitoring Reactive Oxygen Species. Analytical Chemistry, 2015, 87, 6828-6833.	3.2	47
116	Plastified poly(ethylene terephthalate) (PET)-toner microfluidic chip by direct-printing integrated with electrochemical detection for pharmaceutical analysis. Talanta, 2006, 68, 1303-1308.	2.9	46
117	Hemoglobin on Phosphonic Acid Terminated Selfâ€Assembled Monolayers at a Gold Electrode: Immobilization, Direct Electrochemistry, and Electrocatalysis. Chemistry - A European Journal, 2008, 14, 10727-10734.	1.7	46
118	Potentiodynamic deposition of Prussian blue from a solution containing single component of ferricyanide and its mechanism investigation. Journal of Solid State Electrochemistry, 2003, 7, 561-566.	1.2	45
119	Electric-Field Control of the pH-Dependent Redox Process of Cytochrome <i>c</i> lmmobilized on a Gold Electrode. Journal of Physical Chemistry C, 2012, 116, 13038-13044.	1.5	45
120	Oriented assembly of invisible probes: towards single mRNA imaging in living cells. Chemical Science, 2016, 7, 3256-3263.	3.7	45
121	Self-Referenced Ratiometric Detection of Sulfatase Activity with Dual-Emissive Urease-Encapsulated Gold Nanoclusters. ACS Sensors, 2019, 4, 344-352.	4.0	45
122	Effect of Nanoemitters on Suppressing the Formation of Metal Adduct Ions in Electrospray Ionization Mass Spectrometry. Analytical Chemistry, 2017, 89, 1838-1845.	3.2	44
123	Coupling a Wireless Bipolar Ultramicroelectrode with Nanoâ€electrospray Ionization Mass Spectrometry: Insights into the Ultrafast Initial Step of Electrochemical Reactions. Angewandte Chemie - International Edition, 2020, 59, 18244-18248.	7.2	44
124	Reversible Plasmonic Probe Sensitive for pH in Micro/Nanospaces Based on i-Motif-Modulated Morpholino-Gold Nanoparticle Assembly. Analytical Chemistry, 2013, 85, 1053-1057.	3.2	43
125	Fenton reaction-mediated fluorescence quenching of N-acetyl- <scp>l</scp> -cysteine-protected gold nanoclusters: analytical applications of hydrogen peroxide, glucose, and catalase detection. Analyst, The, 2015, 140, 7650-7656.	1.7	43
126	A Multiparameter pHâ€6ensitive Nanodevice Based on Plasmonic Nanopores. Advanced Functional Materials, 2018, 28, 1703847.	7.8	43

#	Article	IF	Citations
127	B ₄ C nanosheets decorated with <i>i) in situ</i> derived boron-doped graphene quantum dots for high-efficiency ambient N ₂ fixation. Chemical Communications, 2019, 55, 7406-7409.	2.2	43
128	Electronic Metal–Support Interaction To Modulate MoS ₂ -Supported Pd Nanoparticles for the Degradation of Organic Dyes. ACS Applied Nano Materials, 2019, 2, 3385-3393.	2.4	43
129	Single gold nanocluster probe-based fluorescent sensor array for heavy metal ion discrimination. Journal of Hazardous Materials, 2021, 405, 124259.	6.5	43
130	Synthesis of metallic nanoparticles protected with N, N, N-trimethyl chitosan chloride via a relatively weak affinity. Nanotechnology, 2006, 17, 4156-4162.	1.3	42
131	A simple electrochemical method for the determination of hydroxyl free radicals without separation process. Talanta, 2008, 74, 760-765.	2.9	42
132	Size-Controllable Gold Nanopores with High SERS Activity. Analytical Chemistry, 2017, 89, 10407-10413.	3.2	42
133	Controllable Synthesis and Formation Mechanism Investigation of Prussian Blue Nanocrystals by Using the Polysaccharide Hydrolysis Method. Journal of Physical Chemistry C, 2009, 113, 14838-14843.	1.5	41
134	Propagation of Concentration Polarization Affecting lons Transport in Branching Nanochannel Array. Analytical Chemistry, 2015, 87, 8194-8202.	3.2	41
135	Surface electric field manipulation of the adsorption kinetics and biocatalytic properties of cytochrome c on a 3D macroporous Au electrode. Analytical and Bioanalytical Chemistry, 2008, 390, 333-341.	1.9	40
136	Greatly improved catalytic activity and direct electron transfer rate of cytochrome C due to the confinement effect in a layered self-assembly structure. Chemical Communications, 2012, 48, 2316.	2.2	40
137	Recognition of plastic nanoparticles using a single gold nanopore fabricated at the tip of a glass nanopipette. Chemical Communications, 2019, 55, 6397-6400.	2.2	40
138	Heparin-platinum nanozymes with enhanced oxidase-like activity for the colorimetric sensing of isoniazid. Talanta, 2020, 211, 120707.	2.9	40
139	Etching and Passivation of Silicon in Alkaline Solution:Â A Coupled Chemical/Electrochemical System. Journal of Physical Chemistry B, 2001, 105, 5722-5729.	1.2	39
140	A simple method for fabrication of sole composition nickel hexacyanoferrate modified electrode and its application. Talanta, 2009, 80, 539-543.	2.9	38
141	Entrapment of Protein in Nanotubes Formed by a Nanochannel and Ionâ€Channel Hybrid Structure of Anodic Alumina. Small, 2012, 8, 1001-1005.	5.2	38
142	Study on the photocatalytic reaction kinetics in a TiO2 nanoparticles coated microreactor integrated microfluidics device. Talanta, 2018, 182, 544-548.	2.9	37
143	A Heparinase Sensor Based on a Ternary System of Hg ²⁺ â€"Heparinâ€"Osmium Nanoparticles. Analytical Chemistry, 2020, 92, 1635-1642.	3.2	37
144	Protein-Supported RuO ₂ Nanoparticles with Improved Catalytic Activity, In Vitro Salt Resistance, and Biocompatibility: Colorimetric and Electrochemical Biosensing of Cellular H ₂ O ₂ . ACS Applied Materials & Samp; Interfaces, 2020, 12, 14876-14883.	4.0	37

#	Article	IF	CITATIONS
145	Off-line form of the Michaelis–Menten equation for studying the reaction kinetics in a polymer microchip integrated with enzyme microreactor. Lab on A Chip, 2006, 6, 811-818.	3.1	36
146	Surface termination and hydrogen bubble adhesion on Si(100) surfaces during anisotropic dissolution in aqueous KOH. Journal of Electroanalytical Chemistry, 2006, 597, 1-12.	1.9	36
147	Realâ€Time Monitoring of Massâ€Transportâ€Related Enzymatic Reaction Kinetics in a Nanochannelâ€Array Reactor. Chemistry - A European Journal, 2010, 16, 10186-10194.	1.7	36
148	Determination of tannic acid based on luminol chemiluminescence catalyzed by cupric oxide nanoparticles. Analytical Methods, 2015, 7, 1924-1928.	1.3	36
149	A green approach to the synthesis of novel "Desert rose stone―like nanobiocatalytic system with excellent enzyme activity and stability. Scientific Reports, 2014, 4, 6606.	1.6	36
150	Highly Efficient Oxygen Reduction Electrocatalyst Derived from a New Three-Dimensional PolyPorphyrin. ACS Applied Materials & Samp; Interfaces, 2016, 8, 25875-25880.	4.0	36
151	Immunoglobulin G-Encapsulated Gold Nanoclusters as Fluorescent Tags for Dot-Blot Immunoassays. ACS Applied Materials & Samp; Interfaces, 2019, 11, 31729-31734.	4.0	36
152	Mo-Doped FeP Nanospheres for Artificial Nitrogen Fixation. ACS Applied Materials & Samp; Interfaces, 2020, 12, 17452-17458.	4.0	36
153	Morphologically Flex Sm-MOF Based Electrochemical Immunosensor for Ultrasensitive Detection of a Colon Cancer Biomarker. Analytical Chemistry, 2022, 94, 3013-3019.	3.2	36
154	An environment-friendly electrochemical detachment method for porous anodic alumina. Journal of Electroanalytical Chemistry, 2007, 600, 257-264.	1.9	35
155	Highly efficient and selective enrichment of phosphopeptides using porous anodic alumina membrane for MALDI-TOF MS analysis. Journal of the American Society for Mass Spectrometry, 2007, 18, 1387-1395.	1.2	35
156	Importance of Hot Spots in Gold Nanostructures on Direct Plasmon-Enhanced Electrochemistry. ACS Applied Nano Materials, 2018, 1, 5805-5811.	2.4	35
157	pHâ€Dependent Slipping and Exfoliation of Layered Covalent Organic Framework. Chemistry - A European Journal, 2020, 26, 12996-13001.	1.7	35
158	Size-focusing results in highly photoluminescent sulfur quantum dots with a stable emission wavelength. Nanoscale, 2021, 13, 2519-2526.	2.8	35
159	Rapid protein concentration, efficient fluorescence labeling and purification on a micro/nanofluidics chip. Lab on A Chip, 2012, 12, 2664.	3.1	34
160	Insights into the "free state―enzyme reaction kinetics in nanoconfinement. Lab on A Chip, 2013, 13, 1546.	3.1	34
161	Combining plasmonics and electrochemistry at the nanoscale. Current Opinion in Electrochemistry, 2018, 7, 95-102.	2.5	34
162	Electrochemical detector for microchip electrophoresis of poly(dimethylsiloxane) with a three-dimensional adjustor. Journal of Chromatography A, 2004, 1041, 245-248.	1.8	33

#	Article	lF	Citations
163	Electrokinetic control of fluid in plastified laser-printed poly(ethylene terephthalate)-toner microchips. Analytical and Bioanalytical Chemistry, 2005, 382, 192-197.	1.9	33
164	Direct electrochemistry of cytochrome c immobilized on a novel macroporous gold film coated with a self-assembled 11-mercaptoundecanoic acid monolayer. Talanta, 2010, 82, 1164-1169.	2.9	33
165	Label-Free Strategy for In-Situ Analysis of Protein Binding Interaction Based on Attenuated Total Reflection Surface Enhanced Infrared Absorption Spectroscopy (ATR-SEIRAS). Langmuir, 2012, 28, 17564-17570.	1.6	33
166	Ice crystals growth driving assembly of porous nitrogen-doped graphene for catalyzing oxygen reduction probed by in situ fluorescence electrochemistry. Scientific Reports, 2014, 4, 6723.	1.6	33
167	Surface-Enhanced Raman Scattering Probing the Translocation of DNA and Amino Acid through Plasmonic Nanopores. Analytical Chemistry, 2019, 91, 6275-6280.	3.2	33
168	Lightâ€Enhanced Osmotic Energy Harvester Using Photoactive Porphyrin Metal–Organic Framework Membranes. Angewandte Chemie - International Edition, 2022, 61, .	7.2	33
169	A rapid and sensitive method for hydroxyl radical detection on a microfluidic chip using an N-doped porous carbon nanofiber modified pencil graphite electrode. Analyst, The, 2014, 139, 3416.	1.7	32
170	Sensitive Assay of Protease Activity on a Micro/Nanofluidics Preconcentrator Fused with the Fluorescence Resonance Energy Transfer Detection Technique. Analytical Chemistry, 2014, 86, 3216-3221.	3. 2	32
171	Highly Stable and Luminescent Layered Hybrid Materials for Sensitive Detection of TNT Explosives. Analytical Chemistry, 2015, 87, 4530-4537.	3.2	32
172	Colorimetric glutathione assay based on the peroxidase-like activity of a nanocomposite consisting of platinum nanoparticles and graphene oxide. Mikrochimica Acta, 2017, 184, 3945-3951.	2.5	32
173	Enhanced electrochemiluminescence efficiency of Ru(ii) derivative covalently linked carbon nanotubes hybrid. Chemical Communications, 2009, , 7545.	2.2	31
174	Coreâ€"Shell Ag@SiO ₂ Nanoparticles Concentrated on a Micro/Nanofluidic Device for Surface Plasmon Resonance-Enhanced Fluorescent Detection of Highly Reactive Oxygen Species. Analytical Chemistry, 2014, 86, 3013-3019.	3.2	31
175	Plasmonic Nanozymes: Localized Surface Plasmonic Resonance Regulates Reaction Kinetics and Antibacterial Performance. Journal of Physical Chemistry Letters, 2022, 13, 312-323.	2.1	31
176	In Situ Monitoring of Protein Adsorption on a Nanoparticulated Gold Film by Attenuated Total Reflection Surface-Enhanced Infrared Absorption Spectroscopy. Langmuir, 2012, 28, 9460-9465.	1.6	30
177	Thermally treated bare gold nanoparticles for colorimetric sensing of copper ions. Mikrochimica Acta, 2014, 181, 911-916.	2.5	30
178	Atomic level tailoring of the electrocatalytic activity of Au-Pt core-shell nanoparticles with controllable Pt layers toward hydrogen evolution reaction. Journal of Electroanalytical Chemistry, 2018, 819, 442-446.	1.9	30
179	A DNA Nanodevice Simultaneously Activating the EGFR and Integrin for Enhancing Cytoskeletal Activity and Cancer Cell Treatment. Nano Letters, 2019, 19, 7503-7513.	4.5	30
180	Reversible Assembly and Disassembly of Gold Nanoparticles Directed by a Zwitterionic Polymer. Chemistry - A European Journal, 2007, 13, 4197-4202.	1.7	29

#	Article	IF	Citations
181	Gold Nanoparticle-Based Photoluminescent Nanoswitch Controlled by Host–Guest Recognition and Enzymatic Hydrolysis for Arginase Activity Assay. ACS Applied Materials & Samp; Interfaces, 2018, 10, 5358-5364.	4.0	29
182	Improved enzymatic assay for hydrogen peroxide and glucose by exploiting the enzyme-mimicking properties of BSA-coated platinum nanoparticles. Mikrochimica Acta, 2019, 186, 778.	2.5	29
183	Nitrogen and sulfur dual-doped carbon nanotube derived from a thiazolothiazole based conjugated microporous polymer as efficient metal-free electrocatalysts for oxygen reduction reaction. Journal of Power Sources, 2020, 461, 228145.	4.0	29
184	Functional Interface of Ferric Ion Immobilized on Phosphonic Acid Terminated Self-Assembled Monolayers on a Au Electrode for Detection of Hydrogen Peroxide. Journal of Physical Chemistry C, 2009, 113, 3746-3750.	1.5	28
185	A nanochannel array based device for determination of the isoelectric point of confined proteins. Physical Chemistry Chemical Physics, 2012, 14, 9460.	1.3	28
186	Bimetallic Bi/Pt peroxidase mimic and its bioanalytical applications. Analytica Chimica Acta, 2017, 971, 88-96.	2.6	28
187	Copper–Nitrogen-Doped Graphene Hybrid as an Electrochemical Sensing Platform for Distinguishing DNA Bases. Analytical Chemistry, 2017, 89, 10858-10865.	3.2	28
188	Solid-state thiolate-stabilized copper nanoclusters with ultrahigh photoluminescence quantum yield for white light-emitting devices. Nanoscale, 2020, 12, 15791-15799.	2.8	28
189	Mechanism investigation of Prussian blue electrochemically deposited from a solution containing single component of ferricyanide. Electrochimica Acta, 2006, 51, 4019-4023.	2.6	27
190	Electrochemical deposition and mechanism investigation of Prussian blue on graphic carbon paste electrode from an acidic ferricyanide solution. Journal of Solid State Electrochemistry, 2008, 12, 553-558.	1.2	27
191	Nanoconfinement Effects: Glucose Oxidase Reaction Kinetics in Nanofluidics. ChemPhysChem, 2012, 13, 762-768.	1.0	27
192	Conformational change and biocatalysis-triggered spectral shift of single Au nanoparticles. Chemical Communications, 2014, 50, 5480-5483.	2.2	27
193	Fabrication and multifunctional properties of ultrasmall water-soluble tungsten oxide quantum dots. Chemical Communications, 2016, 52, 9534-9537.	2.2	27
194	Label-free monitoring of the thrombin–aptamer recognition reaction using an array of nanochannels coupled with electrochemical detection. Electrochemistry Communications, 2017, 81, 5-9.	2.3	27
195	A Dual-Electrode Approach for Highly Selective Detection of Glucose Based on Diffusion Layer Theory: Experiments and Simulation. Chemistry - A European Journal, 2005, 11, 1341-1347.	1.7	26
196	Direct Electron Transfer of Thiol-Derivatized Tetraphenylporphyrin Assembled on Gold Electrodes in an Aqueous Solution. Journal of Physical Chemistry C, 2009, 113, 9359-9367.	1.5	26
197	Pure Pyridinic Nitrogenâ€Doped Singleâ€Layer Graphene Catalyzes Twoâ€Electron Transfer Process of Oxygen Reduction Reaction. ChemElectroChem, 2016, 3, 2036-2042.	1.7	26
198	Insight into Ion Transfer through the Subâ€Nanometer Channels in Zeolitic Imidazolate Frameworks. Angewandte Chemie, 2017, 129, 4845-4849.	1.6	26

#	Article	lF	Citations
199	Au/ZnSe-Based Surface Enhanced Infrared Absorption Spectroscopy as a Universal Platform for Bioanalysis. Analytical Chemistry, 2018, 90, 3842-3848.	3.2	26
200	High-performance bioanalysis based on ion concentration polarization of micro-/nanofluidic devices. Analytical and Bioanalytical Chemistry, 2019, 411, 4007-4016.	1.9	26
201	Enhanced Electrochemistry of Single Plasmonic Nanoparticles. Angewandte Chemie - International Edition, 2022, 61, e202115819.	7.2	26
202	Sensitive cancer cell detection based on Au nanoparticles enhanced electrochemiluminescence of CdS nanocrystal film supplemented by magnetic separation. Electrochemistry Communications, 2012, 25, 112-115.	2.3	25
203	In situ monitoring of the DNA hybridization by attenuated total reflection surface-enhanced infrared absorption spectroscopy. Chemical Communications, 2012, 48, 3052.	2.2	25
204	Distance-determined sensitivity in attenuated total reflection-surface enhanced infrared absorption spectroscopy: aptamer–antigen compared to antibody–antigen. Chemical Communications, 2014, 50, 7787.	2.2	25
205	Development of a Liverâ€√argeting Gold–PEG–Galactose Nanoparticle Platform and a Structure–Function Study. Particle and Particle Systems Characterization, 2014, 31, 347-356.	1.2	25
206	Ultrasensitive Protein Concentration Detection on a Micro/Nanofluidic Enrichment Chip Using Fluorescence Quenching. ACS Applied Materials & Samp; Interfaces, 2015, 7, 6835-6841.	4.0	25
207	Intraorgan Targeting of Gold Conjugates for Precise Liver Cancer Treatment. ACS Applied Materials & Interfaces, 2017, 9, 31458-31468.	4.0	25
208	Bioinspired Multivalent Ion Responsive Nanopore with Ultrahigh Ion Current Rectification. Journal of Physical Chemistry C, 2019, 123, 13687-13692.	1.5	25
209	Gold Nanowires Array-Based Closed Bipolar Nanoelectrode System for Electrochemiluminescence Detection of î±-Fetoprotein on Cell Surface. Analytical Chemistry, 2022, 94, 7350-7357.	3.2	25
210	Composition and Shape Control in the Construction of Functional Nickel Hexacyanoferrate Nanointerfaces. Journal of Physical Chemistry C, 2009, 113, 21577-21581.	1.5	24
211	Graphene Plasmon-Enhanced IR Biosensing for in Situ Detection of Aqueous-Phase Molecules with an Attenuated Total Reflection Mode. Analytical Chemistry, 2018, 90, 10786-10794.	3.2	24
212	SERS Detection of Nucleobases in Single Silver Plasmonic Nanopores. ACS Sensors, 2020, 5, 2198-2204.	4.0	24
213	UV-ablation nanochannels in micro/nanofluidics devices for biochemical analysis. Talanta, 2011, 85, 298-303.	2.9	23
214	Heme plane orientation dependent direct electron transfer of cytochrome c at SAMs/Au electrodes with different wettability. Chemical Communications, 2012, 48, 10859.	2.2	23
215	Exploration of Two-Enzyme Coupled Catalysis System Using Scanning Electrochemical Microscopy. Analytical Chemistry, 2012, 84, 10586-10592.	3.2	23
216	Colorimetric tyrosinase assay based on catechol inhibition of the oxidase-mimicking activity of chitosan-stabilized platinum nanoparticles. Mikrochimica Acta, 2019, 186, 301.	2.5	23

#	Article	IF	Citations
217	Single Molecule DNA Analysis Based on Atomic-Controllable Nanopores in Covalent Organic Frameworks. Nano Letters, 2022, 22, 1358-1365.	4.5	23
218	Two-Dimensional Nanoscale Self-Assembly on a Gold Surface by Spinodal Decomposition. Physical Review Letters, 2003, 91, 066101.	2.9	22
219	Photosynthesis and characterization of Prussian blue nanocubes on surfaces of TiO2 colloids. Applied Physics Letters, 2006, 88, 053112.	1.5	22
220	Layerâ∈Byâ∈Layer Selfâ∈Assembly of Sulphydrylâ∈Functionalized Multiwalled Carbon Nanotubes and Phosphateâ∈Functionalized Gold Nanoparticles: Detection of Hydrazine. ChemPlusChem, 2012, 77, 914-922.	1.3	22
221	Mass transport in nanofluidic devices. Science China Chemistry, 2012, 55, 453-468.	4.2	22
222	An IMPLICATION logic gate based on citrate-capped gold nanoparticles with thiocyanate and iodide as inputs. Analyst, The, 2013, 138, 6677.	1.7	22
223	Structure orientation of hemin self-assembly layer determining the direct electron transfer reaction. Chemical Communications, 2015, 51, 689-692.	2.2	22
224	Highly sensitive and rapid colorimetric sensing platform based on water-soluble WO x quantum dots with intrinsic peroxidase-like activity. Analytica Chimica Acta, 2017, 992, 128-134.	2.6	22
225	Fabrication of High-Density and Superuniform Gold Nanoelectrode Arrays for Electrochemical Fluorescence Imaging. Analytical Chemistry, 2020, 92, 13493-13499.	3.2	22
226	Dissecting the Flash Chemistry of Electrogenerated Reactive Intermediates by Microdroplet Fusion Mass Spectrometry. Angewandte Chemie - International Edition, 2021, 60, 18494-18498.	7.2	22
227	Alkaline peroxidase activity of cupric oxide nanoparticles and its modulation by ammonia. Analyst, The, 2017, 142, 3986-3992.	1.7	21
228	Localized surface plasmon resonance enhanced label-free photoelectrochemical immunoassay by Au-MoS2 nanohybrid. Electrochimica Acta, 2018, 271, 361-369.	2.6	21
229	Plasmon Coupling Effect-Enhanced Imaging of Metal Ions in Living Cells Using DNAzyme Assembled Core–Satellite Structures. ACS Applied Materials & Samp; Interfaces, 2018, 10, 33966-33975.	4.0	21
230	Regulation of metal ion selectivity of fluorescent gold nanoclusters by metallophilic interactions. Analytica Chimica Acta, 2019, 1088, 116-122.	2.6	21
231	Oxygen vacancy confined nickel cobaltite nanostructures as an excellent interface for the enzyme-free electrochemical sensing of extracellular H ₂ O ₂ secreted from live cells. New Journal of Chemistry, 2020, 44, 14050-14059.	1.4	21
232	Rare-Earth Eu ³⁺ /Gold Nanocluster Ensemble-Based Fluorescent Photoinduced Electron Transfer Sensor for Biomarker Dipicolinic Acid Detection. Langmuir, 2021, 37, 949-956.	1.6	21
233	Study of the electrochemical behavior of isorhamnetin on a glassy carbon electrode and its application. Talanta, 2008, 77, 314-318.	2.9	20
234	Electric field driven protonation/deprotonation of 3,4,9,10-perylene tetracarboxylic acid immobilized on graphene sheets via π–π stacking. Journal of Electroanalytical Chemistry, 2013, 688, 304-307.	1.9	20

#	Article	IF	Citations
235	Solution pH regulating mass transport in highly ordered nanopore array electrode. Electrochemistry Communications, 2014, 42, 1-5.	2.3	20
236	Regulating Ion Transport in a Nanochannel with Tandem and Parallel Structures via Concentration Polarization. Journal of Physical Chemistry Letters, 2020, 11, 524-529.	2.1	20
237	Fluorescent gold nanocluster-based sensor for detection of alkaline phosphatase in human osteosarcoma cells. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2020, 229, 117875.	2.0	20
238	Reversible Electrochemical Tuning of Ion Sieving in Coordination Polymers. Analytical Chemistry, 2020, 92, 9172-9178.	3.2	20
239	Tip-Enhanced Infrared Imaging with Sub-10 nm Resolution and Hypersensitivity. Journal of Physical Chemistry Letters, 2020, 11, 1697-1701.	2.1	19
240	An Electrokinetic Method for Rapid Synthesis of Nanotubes. ChemPhysChem, 2007, 8, 1009-1012.	1.0	18
241	Attenuated Total Reflection Surface-Enhanced Infrared Absorption Spectroscopy: a Powerful Technique for Bioanalysis. Journal of Analysis and Testing, 2017, 1, 1.	2.5	18
242	Bifunctional mechanism of hydrogen oxidation reaction on atomic level tailored-Ru@Pt core-shell nanoparticles with tunable Pt layers. Journal of Electroanalytical Chemistry, 2020, 872, 114348.	1.9	18
243	dâ€"sp Interband Transition Excited Carriers Promoting the Photochemical Growth of Plasmonic Gold Nanoparticles. Journal of Physical Chemistry Letters, 2020, 11 , 8322-8328.	2.1	18
244	One-Pot Preparation of Peptide-Doped Metal–Amino Acid Framework for General Encapsulation and Targeted Delivery. ACS Applied Materials & Samp; Interfaces, 2021, 13, 11195-11204.	4.0	18
245	Exploration of the Copper Active Sites in Electrooxidation of Glucose on a Copper/Nitrogen Doped Graphene Nanocomposite. Journal of Physical Chemistry C, 2016, 120, 15593-15599.	1.5	17
246	Thermo and pH Dual – Actuating Smart Porous Anodic Aluminum for Controllable Drug Release. Advanced Materials Interfaces, 2018, 5, 1800185.	1.9	17
247	Three-dimensional ordered macroporous platinum-based electrode for methanol oxidation. Science Bulletin, 2006, 51, 19-24.	1.7	16
248	Selective Electrochemical Generation of Hydrogen Peroxide from Oxygen Reduction on Atomically Dispersed Platinum. ACS Applied Energy Materials, 2021, 4, 10843-10848.	2.5	16
249	Effect of surface microstructures on the separation efficiency of neurotransmitters on a direct-printed capillary electrophoresis microchip. Talanta, 2009, 79, 1270-1275.	2.9	15
250	Interconnected ordered nanoporous networks of colloidal crystals integrated on a microfluidic chip for highly efficient protein concentration. Electrophoresis, 2011, 32, 3424-3430.	1.3	15
251	Sensitive determination of reactive oxygen species in cigarette smoke using microchip electrophoresis–localized surface plasmon resonance enhanced fluorescence detection. Lab on A Chip, 2014, 14, 1123.	3.1	15
252	Contribution of convection and diffusion to the cascade reaction kinetics of \hat{l}^2 -galactosidase/glucose oxidase confined in a microchannel. Physical Chemistry Chemical Physics, 2016, 18, 14460-14465.	1.3	15

#	Article	IF	CITATIONS
253	A novel device of array nanochannels integrated electrochemical detector for detection of amyloid \hat{l}^2 aggregation and inhibitor screening. Electrochemistry Communications, 2016, 66, 25-28.	2.3	15
254	Preparation of strongly fluorescent water-soluble dithiothreitol modified gold nanoclusters coated with carboxychitosan, and their application to fluorometric determination of the immunosuppressive 6-mercaptopurine. Mikrochimica Acta, 2018, 185, 400.	2.5	15
255	Cathodic electrochemiluminescence performance of all-inorganic perovskite CsPbBr3 nanocrystals in an aqueous medium. Electrochemistry Communications, 2020, 111, 106667.	2.3	15
256	Probing Multidimensional Structural Information of Single Molecules Transporting through a Sub-10 nm Conical Plasmonic Nanopore by SERS. Analytical Chemistry, 2021, 93, 11679-11685.	3.2	15
257	One-step pyrolysis method for the synthesis of highly efficient 3D hollow carbon nanostructure supported metallic catalysts. Journal of Materials Chemistry, 2009, 19, 9141.	6.7	14
258	Exploring the temperature-dependent kinetics and thermodynamics of immobilized glucose oxidase in microchip. Analytical Methods, 2012, 4, 2831.	1.3	14
259	A colorimetric Boolean INHIBIT logic gate for the determination of sulfide based on citrate-capped gold nanoparticles. RSC Advances, 2015, 5, 58574-58579.	1.7	14
260	Label-free, resettable, and multi-readout logic gates based on chemically induced fluorescence switching of gold nanoclusters. Journal of Materials Chemistry C, 2016, 4, 7141-7147.	2.7	14
261	Exploring the Confinement Effect of Carbon Nanotubes on the Electrochemical Properties of Prussian Blue Nanoparticles. Langmuir, 2018, 34, 6983-6990.	1.6	14
262	Tailoring the electron density of Pd nanoparticles through electronic metal-support interaction for accelerating electrocatalysis of formic acid. Electrochemistry Communications, 2019, 107, 106540.	2.3	14
263	Schiff base and Lewis acid-base interaction-regulated aggregation/dispersion of gold nanoparticles for colorimetric recognition of rare-earth Sc3+ ions. Sensors and Actuators B: Chemical, 2020, 311, 127925.	4.0	14
264	Detection of tetanus toxoid with fluorescent tetanus human IgG-AuNC–based immunochromatography test strip. Biosensors and Bioelectronics, 2021, 177, 112977.	5.3	14
265	Bell-Shaped Electron Transfer Kinetics in Gold Nanoclusters. Journal of Physical Chemistry Letters, 2021, 12, 876-883.	2.1	14
266	Labelâ€Free Electrochemiluminescence Imaging of Singleâ€Cell Adhesions by Using Bipolar Nanoelectrode Array. Chemistry - A European Journal, 2022, 28, e202103964.	1.7	14
267	Study on the influence of crossâ€sectional area and zeta potential on separation for hybridâ€chipâ€based capillary electrophoresis using 3â€D simulations. Electrophoresis, 2010, 31, 3665-3674.	1.3	13
268	On chip steady liquid–gas phase separation for flexible generation of dissolved gas concentration gradient. Lab on A Chip, 2012, 12, 1281.	3.1	13
269	Non-linear mass transport in confined nanofluidic devices for label-free bioanalysis/sensors. TrAC - Trends in Analytical Chemistry, 2020, 123, 115760.	5.8	13
270	DNA nanotechnology as a tool to develop molecular tension probes for bio-sensing and bio-imaging applications: An up-to-date review. Nano Structures Nano Objects, 2020, 23, 100523.	1.9	13

#	Article	IF	CITATIONS
271	A Solar Thermoelectric Nanofluidic Device for Solar Thermal Energy Harvesting. CCS Chemistry, 2021, 3, 2174-2182.	4.6	13
272	Microchannel-electrode alignment and separation parameters comparison in microchip capillary electrophoresis by scanning electrochemical microscopy. Journal of Chromatography A, 2006, 1110, 222-226.	1.8	12
273	Electrochemical immunosensor for detection of topoisomerase based on graphene–gold nanocomposites. Talanta, 2014, 125, 439-445.	2.9	12
274	Ultrahigh Enzyme Activity Assembled in Layered Double Hydroxides via Mg ²⁺ -Allosteric Effector. Analytical Chemistry, 2015, 87, 5831-5836.	3.2	12
275	Preliminary Quality Criteria of Citrate-Protected Gold Nanoparticles for Medicinal Applications. ACS Applied Nano Materials, 2018, 1, 2120-2128.	2.4	12
276	Large-Scale and Well-Ordered Assembly of Microspheres in a Small Container. Langmuir, 2019, 35, 8413-8417.	1.6	12
277	Gold core-satellite nanostructure linked by oligonucleotides for detection of glutathione with LSPR scattering spectrum. Talanta, 2019, 193, 123-127.	2.9	12
278	Mechanistic Insight into a Novel Ultrasensitive Nicotine Assay Base on High-Efficiency Quenching of Gold Nanocluster Cathodic Electrochemiluminescence. Analytical Chemistry, 2020, 92, 11438-11443.	3.2	12
279	Plasmon of Au nanorods activates metal–organic frameworks for both the hydrogen evolution reaction and oxygen evolution reaction. Nanoscale, 2020, 12, 17290-17297.	2.8	12
280	PNP Nanofluidic Transistor with Actively Tunable Current Response and Ionic Signal Amplification. Nano Letters, 2022, 22, 3678-3684.	4. 5	12
281	High Spatial Resolution of Ultrathin Covalent Organic Framework Nanopores for Single-Molecule DNA Sensing. Analytical Chemistry, 2022, 94, 9851-9855.	3.2	12
282	Porous anodic alumina membrane as a sample support for MALDI-TOF MS analysis of salt-containing proteins. Journal of the American Society for Mass Spectrometry, 2005, 16, 1488-1492.	1.2	11
283	Novel Coupling Mechanism-Based Imaging Approach to Scanning Electrochemical Microscopy for Probing the Electric Field Distribution at the Microchannel End. Langmuir, 2006, 22, 7052-7058.	1.6	11
284	Simultaneous and sensitive determination of procaine and its metabolite for pharmaceutical quality control and pharmacokinetic research by using a graphite paste electrode. Journal of Solid State Electrochemistry, 2012, 16, 1343-1351.	1.2	11
285	Donnan Potential Caused by Polyelectrolyte Monolayers. Langmuir, 2014, 30, 10127-10132.	1.6	11
286	A simple way to fine tune the redox potentials of cobalt ions encapsulated in nitrogen doped graphene molecular catalysts for the oxygen evolution reaction. Chemical Communications, 2016, 52, 13409-13412.	2.2	11
287	Illustrating the Mass-Transport Effect on Enzyme Cascade Reaction Kinetics by Use of a Rotating Ring–Disk Electrode. Analytical Chemistry, 2017, 89, 12924-12929.	3.2	11
288	Chain-length dependent interfacial immunoreaction kinetics on self-assembled monolayers revealed by surface-enhanced infrared absorption spectroscopy. Talanta, 2018, 176, 124-129.	2.9	11

#	Article	IF	CITATIONS
289	Mass Transfer Modulation and Gas Mapping Based on Covalent Organic Frameworks-Covered Theta Micropipette. Analytical Chemistry, 2020, 92, 7343-7348.	3.2	11
290	One-step immobilization of Ru(bpy)32+ in a silica matrix for the construction of a solid-state electrochemiluminescent sensor with high performance. Analyst, The, 2012, 137, 5245.	1.7	10
291	Liquid–gas dual phase microfluidic system for biocompatible CaCO3 hollow nanoparticles generation and simultaneous molecule doping. Chemical Communications, 2012, 48, 11635.	2.2	10
292	In vivo mapping and assay of matrix metalloproteases for liver tumor diagnosis. RSC Advances, 2016, 6, 8336-8345.	1.7	10
293	An <i>in situ</i> SERS study of ionic transport and the Joule heating effect in plasmonic nanopores. Chemical Communications, 2018, 54, 13236-13239.	2.2	10
294	Synergistic Effect of Electrostatic Interaction and Ionic Dehydration on Asymmetric Ion Transport in Nanochannel/Ion Channel Composite Membrane. Journal of Physical Chemistry Letters, 2022, 13, 5267-5274.	2.1	10
295	Highly Efficient Amination of Benzene to Aniline Mediated by Bromine with Metal Oxide as Cataloreactant. Chemistry Letters, 2006, 35, 1358-1359.	0.7	9
296	Ultrasensitive plasmon enhanced Raman scattering detection of nucleolin using nanochannels of 3D hybrid plasmonic metamaterial. Biosensors and Bioelectronics, 2021, 178, 113040.	5.3	9
297	Antenna Enhanced Infrared Photoinduced Force Imaging in Aqueous Environment with Super-Resolution and Hypersensitivity. CCS Chemistry, 2022, 4, 2738-2747.	4.6	9
298	Cysteine-grafted chitosan-mediated gold nanoparticle assembly: from nanochains to microcubes. Journal of Materials Chemistry, 2009, , .	6.7	8
299	A pH responsive electrochemical switch sensor based on Fe(notpH3) [notpH6=1,4,7-triazacyclononane-1,4,7-triyl-tris(methylene-phosphonic acid)]. Talanta, 2010, 83, 145-148.	2.9	8
300	Dependence of the direct electron transfer activity and adsorption kinetics of cytochrome c on interfacial charge properties. Analyst, The, 2013, 138, 5777.	1.7	8
301	Water transport within carbon nanotubes on a wave. Physical Chemistry Chemical Physics, 2016, 18, 33204-33210.	1.3	8
302	Structural Change of a Single Ag Nanoparticle Observed by Darkâ€field Microspectroscopy. ChemPhysChem, 2018, 19, 954-958.	1.0	8
303	Water as a Universal Infrared Probe for Bioanalysis in Aqueous Solution by Attenuated Total Reflection–Surface Enhanced Infrared Absorption Spectroscopy. Analytical Chemistry, 2018, 90, 12979-12985.	3.2	8
304	The PA-receptor mediated internalization of carboplatin loaded poly-anionic DNA-nanowires for effective treatment of resistant hepatic-cancer HepG-2 cells. Applied Nanoscience (Switzerland), 2020, 10, 1915-1926.	1.6	8
305	Three-Dimensional Metamaterial for Plasmon-Enhanced Raman Scattering at any Excitation Wavelengths from the Visible to Near-Infrared Range. Analytical Chemistry, 2021, 93, 1409-1415.	3.2	8
306	Free-Standing Single Ag Nanowires for Multifunctional Optical Probes. ACS Applied Materials & Samp; Interfaces, 2021, 13, 19023-19030.	4.0	8

#	Article	IF	Citations
307	Electrochemically Switchable Double-Gate Nanofluidic Logic Device as Biomimetic Ion Pumps. ACS Applied Materials & Double-Gate Nanofluidic Logic Device as Biomimetic Ion Pumps. ACS Applied Materials & Double-Gate Nanofluidic Logic Device as Biomimetic Ion Pumps. ACS Applied Materials & Double-Gate Nanofluidic Logic Device as Biomimetic Ion Pumps. ACS Applied Materials & Double-Gate Nanofluidic Logic Device as Biomimetic Ion Pumps. ACS Applied Materials & Double-Gate Nanofluidic Logic Device as Biomimetic Ion Pumps. ACS Applied Materials & Double-Gate Nanofluidic Logic Device as Biomimetic Ion Pumps. ACS Applied Materials & Double-Gate Nanofluidic Logic Device as Biomimetic Ion Pumps. ACS Applied Materials & Double-Gate Nanofluidic Logic Device as Biomimetic Ion Pumps. ACS Applied Materials & Double-Gate Nanofluidic Logic Device Applied Nano	4.0	8
308	Influence of Asymmetric Geometry on the Ion Transport of Tandem Nanochannels. Journal of Physical Chemistry C, 2021, 125, 24622-24629.	1.5	8
309	Diffusion layer based probe-in-tube microdevice for selective analysis of electroactive species. Electrochemistry Communications, 2007, 9, 1553-1557.	2.3	7
310	Electricâ€Field Distribution at the End of a Charged Capillary—A Coupling Imaging Study. ChemPhysChem, 2008, 9, 2109-2115.	1.0	7
311	End Group Properties of Thiols Affecting the Self-Assembly Mechanism at Gold Nanoparticles Film As Evidenced by Water Infrared Probe. Analytical Chemistry, 2019, 91, 14508-14513.	3.2	7
312	Rapidly Visualizing the Membrane Affinity of Gene Vectors Using Polydiacetylene-Based Allochroic Vesicles. ACS Sensors, 2019, 4, 977-983.	4.0	7
313	Antenna array-enhanced attenuated total reflection IR analysis in an aqueous solution. Nanoscale, 2019, 11, 18543-18549.	2.8	7
314	Lightâ€Enhanced Osmotic Energy Harvester Using Photoactive Porphyrin Metal–Organic Framework Membranes. Angewandte Chemie, 2022, 134, .	1.6	7
315	Electrochemical Determination of NDPhA via its Electrocatalysis at Porous Au Electrode in Room Temperature Ionic Liquid. Electroanalysis, 2008, 20, 2003-2008.	1.5	6
316	Fast and sensitive detection of protein concentration in mild environments. Talanta, 2015, 135, 102-107.	2.9	6
317	Specific cell capture and noninvasive release via moderate electrochemical oxidation of boronic ester linkage. Biosensors and Bioelectronics, 2019, 138, 111316.	5.3	6
318	Plasmon-Accelerated Generation of Singlet Oxygen on an Au/MoS ₂ Nanohybrid for Enhanced Photodynamic Killing of Bacterial Pathogens/Cancerous Cells. ACS Applied Bio Materials, 2022, 5, 747-760.	2.3	6
319	Photosynthesis of 1D Prussian Blue Nanowires by Using DNA Templates. Journal of Nanoscience and Nanotechnology, 2009, 9, 2381-2386.	0.9	5
320	Liquid droplet as efficient master in thin membrane fabrication of poly(dimethylsiloxane) microfluidic devices. Science Bulletin, 2010, 55, 1120-1126.	1.7	5
321	The Enhanced Enzymolysis Resistance of Surfaceâ€lmmobilized DNA Caused by Hybridizing with Morpholino. Electroanalysis, 2013, 25, 1074-1079.	1.5	5
322	Establishment of a finite element model for extracting chemical reaction kinetics in a micro-flow injection system with high throughput sampling. Talanta, 2015, 140, 176-182.	2.9	5
323	Competitive approach to the electrochemical detection of phosphopeptides on a porous ZrO2 thin film electrode. Journal of Electroanalytical Chemistry, 2016, 781, 97-102.	1.9	5
324	Pharmacokinetics study of isorhamnetin in rat plasma by a sensitive electrochemical sensor based on reduced graphene oxide. RSC Advances, 2017, 7, 36728-36734.	1.7	5

#	Article	IF	CITATIONS
325	Revealing the kinetics of ionophore facilitating ion transport across lipid bilayers by surface enhanced infrared absorption spectroscopy. Chinese Chemical Letters, 2020, 31, 479-481.	4.8	5
326	Synthesis of Pure Thiophene–Sulfur-Doped Graphene for an Oxygen Reduction Reaction with High Performance. Journal of Physical Chemistry Letters, 2022, 13, 4350-4356.	2.1	5
327	Nanopore-based surface-enhanced Raman scattering technologies. Science Bulletin, 2022, 67, 1539-1541.	4.3	5
328	Current distribution at electrode surfaces as simulated by finite element method. Electrochimica Acta, 2010, 55, 4870-4875.	2.6	4
329	A stochastic route to simulate the growth of porous anodic alumina. RSC Advances, 2014, 4, 45074-45081.	1.7	4
330	On-chip microfluidic generation of monodisperse bubbles for liquid interfacial tension measurement. Talanta, 2018, 176, 646-651.	2.9	4
331	Bioinspired Construction of Ruthenium-decorated Nitrogen-doped Graphene Aerogel as an Efficient Electrocatalyst for Hydrogen Evolution Reaction. Chemical Research in Chinese Universities, 2020, 36, 709-714.	1.3	4
332	Decisive role of pH in synthesis of high purity fluorescent BSA-Au20 nanoclusters. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2020, 239, 118520.	2.0	4
333	Electric Field Driven Surface Ion Transport in Hydrophobic Nanopores â€. Chinese Journal of Chemistry, 2021, 39, 1511-1516.	2.6	4
334	Simultaneous Fabrication of Open-Ended Porous Membrane and Microtube Array in One-Step Anodization of Aluminum. Science of Advanced Materials, 2009, 1, 25-30.	0.1	4
335	Enhanced Electrochemistry of Single Plasmonic Nanoparticles. Angewandte Chemie, 2022, 134, .	1.6	4
336	6-Aza-2-thio-thymine–gold nanoclusters: an excellent candidate in the photoelectrochemical field. Chemical Communications, 2022, 58, 6219-6222.	2.2	4
337	Transporting Micro-fluids in Vertical Direction Using Surface Acoustic Waves. Chinese Journal of Analytical Chemistry, 2011, 39, 1805-1810.	0.9	3
338	Transporting Digital Micro-fluids Among Multi-chips Based on Surface Acoustic Waves. Chinese Journal of Analytical Chemistry, 2011, 39, 765-769.	0.9	3
339	Preparation and characterization of sulfonated chitosan-modified gold nanoparticles and their surface electronic payload of charged drugs. Science China Life Sciences, 2018, 61, 457-463.	2.3	3
340	Improving quantitative control and homogeneous distribution of samples on paper-based analytical devices <i>via</i> drop-on-demand inkjet printing. Analyst, The, 2019, 144, 4013-4023.	1.7	3
341	Antibacterial Therapy: In Situ Fabrication of Ultrasmall Gold Nanoparticles/2D MOFs Hybrid as Nanozyme for Antibacterial Therapy (Small 23/2020). Small, 2020, 16, 2070130.	5.2	3
342	Study on the Mechanism and Kinetics of Oxygen Reduction Reaction on 3D Porous Platinum Film Constructed Using Colloidal Crystal Template. Journal of Nanoscience and Nanotechnology, 2016, 16, 12388-12393.	0.9	3

#	Article	IF	CITATIONS
343	Revealing the Hydrogen Bonding Interaction of DNA with Unnatural Bases via Plasmonic Antenna Enhanced Infrared Spectroscopy. Journal of Physical Chemistry Letters, 2021, 12, 10255-10261.	2.1	3
344	An Electrochemical Study of the Surface Hybridization Process of Morpholinoâ€DNA: Thermodynamics and Kinetics. Electroanalysis, 2016, 28, 1647-1653.	1.5	2
345	Living-DNA Nanogel Appendant Enables <i>In Situ</i> Modulation and Quantification of Regulation Effects on Membrane Proteins. ACS Applied Bio Materials, 2021, 4, 4565-4574.	2.3	2
346	DNA Nanotechnology for Modulating the Growth and Development of Neurons. CCS Chemistry, 2021, 3, 2381-2393.	4.6	2
347	Thermally Driven Transformation of Water Clustering Structures at Self-Assembled Monolayers. Langmuir, 2021, 37, 11493-11498.	1.6	2
348	Spatiotemporally Controlled Access to Photoluminescence Dark State of 2D Monolayer Semiconductor by FRAP Microscopy. Advanced Functional Materials, 0, , 2107551.	7.8	2
349	<i>In Situ</i> Monitoring of DNA–Hg ²⁺ Binding Reaction within Confined Nanospace of Metamaterial Nanochannel by Plasmon-Enhanced Raman Scattering. Journal of Physical Chemistry Letters, 2022, 13, 1330-1336.	2.1	2
350	Nanochannels for low-grade energy harvesting. Current Opinion in Electrochemistry, 2022, 33, 100956.	2.5	2
351	Nanocomposites: Graphene-Ruthenium(II) Complex Composites for Sensitive ECL Immunosensors (Small) Tj ETQo	1 _{5.2} 0.784	1314 rgBT C
352	Frontispiece: Enhanced Peroxidase‣ike Performance of Gold Nanoparticles by Hot Electrons. Chemistry - A European Journal, 2017, 23, .	1.7	1
353	Barcode signal amplifying strategy for sensitive and accurate protein detection on LC-MS/MS. Analyst, The, 2021, 146, 1725-1733.	1.7	1
354	Marked ion current rectification in microchannels. Science China Chemistry, 2017, 60, 685-686.	4.2	0
355	The hydrogen evolution reaction on gold nanoparticles modified MoS& t;sub>2& t;/sub> nanosheets. Scientia Sinica Chimica, 2017, 47, 676-682.	0.2	0