Song Guo

List of Publications by Citations

Source: https://exaly.com/author-pdf/2313515/song-guo-publications-by-citations.pdf

Version: 2024-04-10

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

62 15,671 106 540 h-index g-index citations papers 628 19,313 5.7 7.33 L-index ext. citations avg, IF ext. papers

#	Paper	IF	Citations
540	Elucidating severe urban haze formation in China. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2014 , 111, 17373-8	11.5	1076
539	Persistent sulfate formation from London Fog to Chinese haze. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2016 , 113, 13630-13635	11.5	803
538	Formation of urban fine particulate matter. <i>Chemical Reviews</i> , 2015 , 115, 3803-55	68.1	717
537	Markedly enhanced absorption and direct radiative forcing of black carbon under polluted urban environments. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2016 , 113, 4266-71	11.5	339
536	Green Industrial Internet of Things Architecture: An Energy-Efficient Perspective 2016 , 54, 48-54		285
535	Joint Optimization of Task Scheduling and Image Placement in Fog Computing Supported Software-Defined Embedded System. <i>IEEE Transactions on Computers</i> , 2016 , 65, 3702-3712	2.5	271
534	Information and Communications Technologies for Sustainable Development Goals: State-of-the-Art, Needs and Perspectives. <i>IEEE Communications Surveys and Tutorials</i> , 2018 , 20, 2389-2	40 ^{37.1}	237
533	Big Data Meet Green Challenges: Big Data Toward Green Applications. <i>IEEE Systems Journal</i> , 2016 , 10, 888-900	4.3	228
532	Cost Efficient Resource Management in Fog Computing Supported Medical Cyber-Physical System. <i>IEEE Transactions on Emerging Topics in Computing</i> , 2017 , 5, 108-119	4.1	226
531	Size-resolved aerosol water-soluble ionic compositions in the summer of Beijing: implication of regional secondary formation. <i>Atmospheric Chemistry and Physics</i> , 2010 , 10, 947-959	6.8	178
530	A Survey on Energy Internet: Architecture, Approach, and Emerging Technologies. <i>IEEE Systems Journal</i> , 2018 , 12, 2403-2416	4.3	166
529	Achieving Sustainable Ultra-Dense Heterogeneous Networks for 5G 2017 , 55, 84-90		166
528	Characterization of high-resolution aerosol mass spectra of primary organic aerosol emissions from Chinese cooking and biomass burning. <i>Atmospheric Chemistry and Physics</i> , 2010 , 10, 11535-11543	6.8	154
527	Efficient Algorithms for Capacitated Cloudlet Placements. <i>IEEE Transactions on Parallel and Distributed Systems</i> , 2016 , 27, 2866-2880	3.7	148
526	. IEEE Transactions on Parallel and Distributed Systems, 2014 , 25, 2245-2254	3.7	145
525	Big Data Meet Green Challenges: Greening Big Data. IEEE Systems Journal, 2016, 10, 873-887	4.3	144
524	The Web of Things: A Survey (Invited Paper). Journal of Communications, 2011, 6,	0.5	142

(2015-2014)

523	Reliable Multicast with Pipelined Network Coding Using Opportunistic Feeding and Routing. <i>IEEE Transactions on Parallel and Distributed Systems</i> , 2014 , 25, 3264-3273	3.7	139
522	Deep Learning for Physical-Layer 5G Wireless Techniques: Opportunities, Challenges and Solutions. <i>IEEE Wireless Communications</i> , 2020 , 27, 214-222	13.4	130
521	Making Big Data Open in Edges: A Resource-Efficient Blockchain-Based Approach. <i>IEEE Transactions on Parallel and Distributed Systems</i> , 2019 , 30, 870-882	3.7	127
520	Discriminating DDoS Attacks from Flash Crowds Using Flow Correlation Coefficient. <i>IEEE Transactions on Parallel and Distributed Systems</i> , 2012 , 23, 1073-1080	3.7	125
519	Green Resource Allocation Based on Deep Reinforcement Learning in Content-Centric IoT. <i>IEEE Transactions on Emerging Topics in Computing</i> , 2020 , 8, 781-796	4.1	116
518	Traffic and Computation Co-Offloading With Reinforcement Learning in Fog Computing for Industrial Applications. <i>IEEE Transactions on Industrial Informatics</i> , 2019 , 15, 976-986	11.9	115
517	A Learning-Based Incentive Mechanism for Federated Learning. <i>IEEE Internet of Things Journal</i> , 2020 , 7, 6360-6368	10.7	114
516	High N2O5 Concentrations Observed in Urban Beijing: Implications of a Large Nitrate Formation Pathway. <i>Environmental Science and Technology Letters</i> , 2017 , 4, 416-420	11	113
515	Protection of Big Data Privacy. <i>IEEE Access</i> , 2016 , 4, 1821-1834	3.5	112
514	Aerosol Liquid Water Driven by Anthropogenic Inorganic Salts: Implying Its Key Role in Haze Formation over the North China Plain. <i>Environmental Science and Technology Letters</i> , 2018 , 5, 160-166	11	110
513	Blockchain Meets Edge Computing: A Distributed and Trusted Authentication System. <i>IEEE Transactions on Industrial Informatics</i> , 2020 , 16, 1972-1983	11.9	110
512	A Comprehensive Survey of Blockchain: From Theory to IoT Applications and Beyond. <i>IEEE Internet of Things Journal</i> , 2019 , 6, 8114-8154	10.7	103
511	SAMR: A Self-adaptive MapReduce Scheduling Algorithm in Heterogeneous Environment 2010,		102
510	Characteristics of aerosol size distributions and new particle formation in the summer in Beijing. <i>Journal of Geophysical Research</i> , 2009 , 114,		101
509	An Efficient Privacy-Preserving Ranked Keyword Search Method. <i>IEEE Transactions on Parallel and Distributed Systems</i> , 2016 , 27, 951-963	3.7	99
508	Estimation of size-resolved ambient particle density based on the measurement of aerosol number, mass, and chemical size distributions in the winter in Beijing. <i>Environmental Science & mp; Technology</i> , 2012 , 46, 9941-7	10.3	98
507	A Game Theoretical Incentive Scheme for Relay Selection Services in Mobile Social Networks. <i>IEEE Transactions on Vehicular Technology</i> , 2016 , 65, 6692-6702	6.8	97
506	. IEEE Transactions on Computers, 2015 , 64, 3128-3139	2.5	91

(2011-2013)

487	Role of OH-initiated oxidation of isoprene in aging of combustion soot. <i>Environmental Science & Environmental & Environmental</i>	10.3	69	
486	2017 , 55, 24-30		68	
485	Resource Management at the Network Edge: A Deep Reinforcement Learning Approach. <i>IEEE Network</i> , 2019 , 33, 26-33	11.4	66	
484	Just-in-Time Code Offloading for Wearable Computing. <i>IEEE Transactions on Emerging Topics in Computing</i> , 2015 , 3, 74-83	4.1	66	
483	Byzantine-Resilient Secure Software-Defined Networks with Multiple Controllers in Cloud. <i>IEEE Transactions on Cloud Computing</i> , 2014 , 2, 436-447	3.3	66	
482	Cost Minimization for Big Data Processing in Geo-Distributed Data Centers. <i>IEEE Transactions on Emerging Topics in Computing</i> , 2014 , 2, 314-323	4.1	65	
481	Special phenomena from a single liquid drop impact on wetted cylindrical surfaces. <i>Experimental Thermal and Fluid Science</i> , 2013 , 51, 18-27	3	63	
480	An SDN-Based Architecture for Next-Generation Wireless Networks. <i>IEEE Wireless Communications</i> , 2017 , 24, 25-31	13.4	62	
479	Software-defined wireless mesh networks: architecture and traffic orchestration. <i>IEEE Network</i> , 2015 , 29, 24-30	11.4	62	
478	Utility Based Data Computing Scheme to Provide Sensing Service in Internet of Things. <i>IEEE Transactions on Emerging Topics in Computing</i> , 2019 , 7, 337-348	4.1	58	
477	Big Data Analytics for Emergency Communication Networks: A Survey. <i>IEEE Communications Surveys and Tutorials</i> , 2016 , 18, 1758-1778	37.1	56	
476	A chain-cluster based routing algorithm for wireless sensor networks. <i>Journal of Intelligent Manufacturing</i> , 2012 , 23, 1305-1313	6.7	56	
475	Joint Optimization of Rule Placement and Traffic Engineering for QoS Provisioning in Software Defined Network. <i>IEEE Transactions on Computers</i> , 2015 , 64, 3488-3499	2.5	53	
474	The characteristics and origins of carbonaceous aerosol at a rural site of PRD in summer of 2006. <i>Atmospheric Chemistry and Physics</i> , 2012 , 12, 1811-1822	6.8	53	
473	The secondary formation of organosulfates under interactions between biogenic emissions and anthropogenic pollutants in summer in Beijing. <i>Atmospheric Chemistry and Physics</i> , 2018 , 18, 10693-107	13 ^{.8}	53	
472	Multi-Agent Imitation Learning for Pervasive Edge Computing: A Decentralized Computation Offloading Algorithm. <i>IEEE Transactions on Parallel and Distributed Systems</i> , 2021 , 32, 411-425	3.7	52	
471	. IEEE Transactions on Computers, 2015 , 64, 139-151	2.5	51	
470	Measurements of gaseous H₂SO₄ by AP-ID-CIMS during CAREBeijing 2008 Campaign. <i>Atmospheric Chemistry and Physics</i> , 2011 , 11, 7755-7765	6.8	50	

		Sunu	uuu
469	Blockchain Meets Edge Computing: Stackelberg Game and Double Auction Based Task Offloading for Mobile Blockchain. <i>IEEE Transactions on Vehicular Technology</i> , 2020 , 69, 5549-5561	6.8	49
468	A Deep Reinforcement Learning Based Offloading Game in Edge Computing. <i>IEEE Transactions on Computers</i> , 2020 , 69, 883-893	2.5	48
467	An artificial bee colony algorithm for data collection path planning in sparse wireless sensor networks. <i>International Journal of Machine Learning and Cybernetics</i> , 2015 , 6, 375-383	3.8	47
466	Optimal Task Placement with QoS Constraints in Geo-Distributed Data Centers Using DVFS. <i>IEEE Transactions on Computers</i> , 2015 , 64, 2049-2059	2.5	46
465	Patchwork-Based Audio Watermarking Method Robust to De-synchronization Attacks. <i>IEEE/ACM Transactions on Audio Speech and Language Processing</i> , 2014 , 22, 1413-1423	3.6	46
464	Comparison of particle number size distributions and new particle formation between the urban and rural sites in the PRD region, China. <i>Atmospheric Environment</i> , 2013 , 76, 181-188	5.3	46
463	Variation of particle number size distributions and chemical compositions at the urban and downwind regional sites in the Pearl River Delta during summertime pollution episodes. Atmospheric Chemistry and Physics, 2010, 10, 9431-9439	6.8	46
462	Renewable Energy-Aware Big Data Analytics in Geo-Distributed Data Centers with Reinforcement Learning. <i>IEEE Transactions on Network Science and Engineering</i> , 2020 , 7, 205-215	4.9	46
461	Online gas- and particle-phase measurements of organosulfates, organosulfonates and nitrooxy organosulfates in Beijing utilizing a FIGAERO ToF-CIMS. <i>Atmospheric Chemistry and Physics</i> , 2018 , 18, 10355-10371	6.8	46
460	Daytime HONO formation in the suburban area of the megacity Beijing, China. <i>Science China Chemistry</i> , 2014 , 57, 1032-1042	7.9	45
459	Imitation Learning Enabled Task Scheduling for Online Vehicular Edge Computing. <i>IEEE Transactions on Mobile Computing</i> , 2020 , 1-1	4.6	45
458	Cooperative Transmission in Integrated Terrestrial-Satellite Networks. <i>IEEE Network</i> , 2019 , 33, 204-210	11.4	45
457	Distributed Energy Management for Vehicle-to-Grid Networks. IEEE Network, 2017, 31, 22-28	11.4	44
456	Capacitated cloudlet placements in Wireless Metropolitan Area Networks 2015,		44
455	Spread Spectrum-Based High Embedding Capacity Watermarking Method for Audio Signals. <i>IEEE/ACM Transactions on Audio Speech and Language Processing</i> , 2015 , 23, 2228-2237	3.6	43
454	MeLoDy: A Long-Term Dynamic Quality-Aware Incentive Mechanism for Crowdsourcing. <i>IEEE Transactions on Parallel and Distributed Systems</i> , 2018 , 29, 901-914	3.7	43
453	Chameleon Hashing for Secure and Privacy-Preserving Vehicular Communications. <i>IEEE Transactions on Parallel and Distributed Systems</i> , 2014 , 25, 2794-2803	3.7	43
452	Cost Minimization for Rule Caching in Software Defined Networking. <i>IEEE Transactions on Parallel</i> and Distributed Systems. 2016 , 27, 1007-1016	3.7	42

451	Range-Based Localization for Sparse 3-D Sensor Networks. <i>IEEE Internet of Things Journal</i> , 2019 , 6, 753-	7:6:4 .7	42
450	Traffic-Aware Geo-Distributed Big Data Analytics with Predictable Job Completion Time. <i>IEEE Transactions on Parallel and Distributed Systems</i> , 2017 , 28, 1785-1796	3.7	42
449	Spatial distributions and chemical properties of PM2.5 based on 21 field campaigns at 17 sites in China. <i>Chemosphere</i> , 2016 , 159, 480-487	8.4	42
448	Approximation and Online Algorithms for NFV-Enabled Multicasting in SDNs 2017,		41
447	Robust Patchwork-Based Embedding and Decoding Scheme for Digital Audio Watermarking. <i>IEEE Transactions on Audio Speech and Language Processing</i> , 2012 , 20, 2232-2239		41
446	Distributed and Dynamic Service Placement in Pervasive Edge Computing Networks. <i>IEEE Transactions on Parallel and Distributed Systems</i> , 2021 , 32, 1277-1292	3.7	41
445	Photochemical smog in China: scientific challenges and implications for air-quality policies. <i>National Science Review</i> , 2016 , 3, 401-403	10.8	41
444	Incentive Scheme for Cyber Physical Social Systems Based on User Behaviors. <i>IEEE Transactions on Emerging Topics in Computing</i> , 2020 , 8, 92-103	4.1	41
443	Efficient N₂O₅ uptake and NO₃ oxidation in the outflow of urban Beijing. <i>Atmospheric Chemistry and Physics</i> , 2018 , 18, 9705-9721	6.8	41
442	Multi-Category RFID Estimation. IEEE/ACM Transactions on Networking, 2017, 25, 264-277	3.8	40
441	Insight into characteristics and sources of PM2.5 in the BeijingIlianjinHebei region, China. <i>National Science Review</i> , 2015 , 2, 257-258	10.8	38
440	Efficient NFV-Enabled Multicasting in SDNs. <i>IEEE Transactions on Communications</i> , 2019 , 67, 2052-2070	6.9	37
439	A Feasible IP Traceback Framework through Dynamic Deterministic Packet Marking. <i>IEEE Transactions on Computers</i> , 2016 , 65, 1418-1427	2.5	36
438	A MapReduce based Parallel Niche Genetic Algorithm for contaminant source identification in water distribution network. <i>Ad Hoc Networks</i> , 2015 , 35, 116-126	4.8	36
437	Green DataPath for TCAM-Based Software-Defined Networks 2016 , 54, 194-201		36
436	Evolution of Software-Defined Sensor Networks 2013 ,		36
435	OH-Initiated Oxidation of m-Xylene on Black Carbon Aging. <i>Environmental Science & Environmental Scien</i>	10.3	36
434	Adaptive and Fault-Tolerant Data Processing in Healthcare IoT Based on Fog Computing. <i>IEEE Transactions on Network Science and Engineering</i> , 2020 , 7, 263-273	4.9	36

433	Incentive mechanisms for device-to-device communications. <i>IEEE Network</i> , 2015 , 29, 75-79	11.4	35
432	. IEEE Transactions on Industrial Informatics, 2016 , 12, 2177-2185	11.9	35
431	Distributed Segment-Based Anomaly Detection With Kullback[leibler Divergence in Wireless Sensor Networks. <i>IEEE Transactions on Information Forensics and Security</i> , 2017 , 12, 101-110	8	35
430	Ageing and hygroscopicity variation of black carbon particles in Beijing measured by a quasi-atmospheric aerosol evolution study (QUALITY) chamber. <i>Atmospheric Chemistry and Physics</i> , 2017 , 17, 10333-10348	6.8	35
429	Service Chaining for Hybrid Network Function. <i>IEEE Transactions on Cloud Computing</i> , 2019 , 7, 1082-109	943.3	35
428	Gasoline aromatics: altritical determinant of urban secondary organic aerosol formation. Atmospheric Chemistry and Physics, 2017 , 17, 10743-10752	6.8	34
427	Secure Wireless Communications Based on Compressive Sensing: A Survey. <i>IEEE Communications Surveys and Tutorials</i> , 2019 , 21, 1093-1111	37.1	34
426	. IEEE Transactions on Emerging Topics in Computing, 2017 , 5, 438-448	4.1	33
425	2016,		33
424	QoS-Aware Cooperative Computation Offloading for Robot Swarms in Cloud Robotics. <i>IEEE Transactions on Vehicular Technology</i> , 2019 , 68, 4027-4041	6.8	32
424 423		6.8	3 ²
	Transactions on Vehicular Technology, 2019 , 68, 4027-4041 Green Data-Collection From Geo-Distributed IoT Networks Through Low-Earth-Orbit Satellites. <i>IEEE</i>	4	
423	Transactions on Vehicular Technology, 2019, 68, 4027-4041 Green Data-Collection From Geo-Distributed IoT Networks Through Low-Earth-Orbit Satellites. IEEE Transactions on Green Communications and Networking, 2019, 3, 806-816 Intelligent VNF Orchestration and Flow Scheduling via Model-Assisted Deep Reinforcement	4	32
423 422	Transactions on Vehicular Technology, 2019, 68, 4027-4041 Green Data-Collection From Geo-Distributed IoT Networks Through Low-Earth-Orbit Satellites. IEEE Transactions on Green Communications and Networking, 2019, 3, 806-816 Intelligent VNF Orchestration and Flow Scheduling via Model-Assisted Deep Reinforcement Learning. IEEE Journal on Selected Areas in Communications, 2020, 38, 279-291 Privacy-preserving Data Aggregation Computing in Cyber-Physical Social Systems. ACM	4	32
423 422 421	Green Data-Collection From Geo-Distributed IoT Networks Through Low-Earth-Orbit Satellites. <i>IEEE Transactions on Green Communications and Networking</i> , 2019 , 3, 806-816 Intelligent VNF Orchestration and Flow Scheduling via Model-Assisted Deep Reinforcement Learning. <i>IEEE Journal on Selected Areas in Communications</i> , 2020 , 38, 279-291 Privacy-preserving Data Aggregation Computing in Cyber-Physical Social Systems. <i>ACM Transactions on Cyber-Physical Systems</i> , 2019 , 3, 1-23 A Truthful Double Auction for Device-to-Device Communications in Cellular Networks. <i>IEEE Journal</i>	14.2	32 32 32
423 422 421 420	Transactions on Vehicular Technology, 2019, 68, 4027-4041 Green Data-Collection From Geo-Distributed IoT Networks Through Low-Earth-Orbit Satellites. IEEE Transactions on Green Communications and Networking, 2019, 3, 806-816 Intelligent VNF Orchestration and Flow Scheduling via Model-Assisted Deep Reinforcement Learning. IEEE Journal on Selected Areas in Communications, 2020, 38, 279-291 Privacy-preserving Data Aggregation Computing in Cyber-Physical Social Systems. ACM Transactions on Cyber-Physical Systems, 2019, 3, 1-23 A Truthful Double Auction for Device-to-Device Communications in Cellular Networks. IEEE Journal on Selected Areas in Communications, 2016, 34, 71-81 Strategic Antieavesdropping Game for Physical Layer Security in Wireless Cooperative Networks.	4 14.2 2.3	32 32 32 31
423 422 421 420 419	Transactions on Vehicular Technology, 2019, 68, 4027-4041 Green Data-Collection From Geo-Distributed IoT Networks Through Low-Earth-Orbit Satellites. IEEE Transactions on Green Communications and Networking, 2019, 3, 806-816 Intelligent VNF Orchestration and Flow Scheduling via Model-Assisted Deep Reinforcement Learning. IEEE Journal on Selected Areas in Communications, 2020, 38, 279-291 Privacy-preserving Data Aggregation Computing in Cyber-Physical Social Systems. ACM Transactions on Cyber-Physical Systems, 2019, 3, 1-23 A Truthful Double Auction for Device-to-Device Communications in Cellular Networks. IEEE Journal on Selected Areas in Communications, 2016, 34, 71-81 Strategic Antieavesdropping Game for Physical Layer Security in Wireless Cooperative Networks. IEEE Transactions on Vehicular Technology, 2017, 66, 9448-9457	4 14.2 2.3	32 32 32 31

(2011-2018)

415	A survey on sensor placement for contamination detection in water distribution systems. <i>Wireless Networks</i> , 2018 , 24, 647-661	2.5	30	
414	Influence of biomass burning from South Asia at a high-altitude mountain receptor site in China. <i>Atmospheric Chemistry and Physics</i> , 2017 , 17, 6853-6864	6.8	30	
413	Segment-Based Anomaly Detection with Approximated Sample Covariance Matrix in Wireless Sensor Networks. <i>IEEE Transactions on Parallel and Distributed Systems</i> , 2015 , 26, 574-583	3.7	30	
412	Mobility Prediction Based Joint Stable Routing and Channel Assignment for Mobile Ad Hoc Cognitive Networks. <i>IEEE Transactions on Parallel and Distributed Systems</i> , 2016 , 27, 789-802	3.7	29	
411	Cloud Computing Assisted Blockchain-Enabled Internet of Things. <i>IEEE Transactions on Cloud Computing</i> , 2019 , 1-1	3.3	29	
410	Rank-Based Image Watermarking Method With High Embedding Capacity and Robustness. <i>IEEE Access</i> , 2016 , 4, 1689-1699	3.5	29	
409	Networking Integrated CloudEdgeEnd in IoT: A Blockchain-Assisted Collective Q-Learning Approach. <i>IEEE Internet of Things Journal</i> , 2021 , 8, 12694-12704	10.7	29	
408	Fairness-Aware Dynamic Rate Control and Flow Scheduling for Network Utility Maximization in Network Service Chain. <i>IEEE Journal on Selected Areas in Communications</i> , 2019 , 37, 1059-1071	14.2	28	
407	Joint DNN Partition Deployment and Resource Allocation for Delay-Sensitive Deep Learning Inference in IoT. <i>IEEE Internet of Things Journal</i> , 2020 , 7, 9241-9254	10.7	28	
406	Variations of fine particle physiochemical properties during a heavy haze episode in the winter of Beijing. <i>Science of the Total Environment</i> , 2016 , 571, 103-9	10.2	28	
405	The Next Generation Heterogeneous Satellite Communication Networks: Integration of Resource Management and Deep Reinforcement Learning. <i>IEEE Wireless Communications</i> , 2020 , 27, 105-111	13.4	28	
404	Heterogeneous chemistry of glyoxal on acidic solutions. An oligomerization pathway for secondary organic aerosol formation. <i>Journal of Physical Chemistry A</i> , 2015 , 119, 4457-63	2.8	27	
403	Cluster Frameworks for Efficient Scheduling and Resource Allocation in Data Center Networks: A Survey. <i>IEEE Communications Surveys and Tutorials</i> , 2018 , 20, 3560-3580	37.1	27	
402	Al Routers & Network Mind: A Hybrid Machine Learning Paradigm for Packet Routing. <i>IEEE Computational Intelligence Magazine</i> , 2019 , 14, 21-30	5.6	27	
401	A Differential Privacy-Based Query Model for Sustainable Fog Data Centers. <i>IEEE Transactions on Sustainable Computing</i> , 2019 , 4, 145-155	3.5	27	
400	. IEEE Transactions on Parallel and Distributed Systems, 2015 , 26, 824-833	3.7	26	
399	Temporal and spatial distribution of PM chemical composition in a coastal city of Southeast China. <i>Science of the Total Environment</i> , 2017 , 605-606, 337-346	10.2	26	
398	FELL: A Flexible Virtual Network Embedding Algorithm with Guaranteed Load Balancing 2011 ,		26	

379	Robust Large-Scale Spectrum Auctions against False-Name Bids. <i>IEEE Transactions on Mobile Computing</i> , 2017 , 16, 1730-1743	4.6	22	
378	Joint Multigroup Precoding and Resource Allocation in Integrated Terrestrial-Satellite Networks. IEEE Transactions on Vehicular Technology, 2019, 68, 8075-8090	6.8	22	
377	14C-Based source assessment of carbonaceous aerosols at a rural site. <i>Atmospheric Environment</i> , 2012 , 50, 36-40	5.3	22	
376	Top- \$k\$ Queries for Categorized RFID Systems. <i>IEEE/ACM Transactions on Networking</i> , 2017 , 25, 2587-	26080	22	
375	. IEEE Network, 2020 , 34, 84-91	11.4	22	
374	Energy Management for EV Charging in Software-Defined Green Vehicle-to-Grid Network 2018 , 56, 150	6-163	22	
373	Energy-Efficient Event Detection by Participatory Sensing Under Budget Constraints. <i>IEEE Systems Journal</i> , 2017 , 11, 2490-2501	4.3	21	
372	Spectrum Sensing and Recognition in Satellite Systems. <i>IEEE Transactions on Vehicular Technology</i> , 2019 , 68, 2502-2516	6.8	21	
371	. IEEE Transactions on Vehicular Technology, 2020 , 69, 8777-8791	6.8	21	
370	A Continuous-Decision Virtual Network Embedding Scheme Relying on Reinforcement Learning. <i>IEEE Transactions on Network and Service Management</i> , 2020 , 17, 864-875	4.8	21	
369	Vital Signs Monitoring with RFID: Opportunities and Challenges. <i>IEEE Network</i> , 2019 , 33, 126-132	11.4	21	
368	More convenient more overhead 2011,		21	
367	Improving source routing reliability in mobile ad hoc networks. <i>IEEE Transactions on Parallel and Distributed Systems</i> , 2005 , 16, 362-373	3.7	21	
366	RDAM: A Reinforcement Learning Based Dynamic Attribute Matrix Representation for Virtual Network Embedding. <i>IEEE Transactions on Emerging Topics in Computing</i> , 2021 , 9, 901-914	4.1	21	
365	. IEEE Transactions on Parallel and Distributed Systems, 2014 , 25, 1886-1895	3.7	20	
364	. IEEE Transactions on Cognitive Communications and Networking, 2020 , 6, 509-522	6.6	19	
363	Reliable Bulk-Data Dissemination in Delay Tolerant Networks. <i>IEEE Transactions on Parallel and Distributed Systems</i> , 2014 , 25, 2180-2189	3.7	19	
362	Architecture-based design and optimization of genetic algorithms on multi- and many-core systems. Future Generation Computer Systems, 2014, 38, 75-91	7.5	19	

361	A general cloud firewall framework with dynamic resource allocation 2013,		19
360	Take Renewable Energy into CRAN toward Green Wireless Access Networks. <i>IEEE Network</i> , 2017 , 31, 62-68	11.4	19
359	Antenna orientation optimization for minimum-energy multicast tree construction in wireless ad hoc networks with directional antennas 2004 ,		19
358	Posted Pricing for Chance Constrained Robust Crowdsensing. <i>IEEE Transactions on Mobile Computing</i> , 2020 , 19, 188-199	4.6	19
357	A Survey of Incentive Mechanism Design for Federated Learning. <i>IEEE Transactions on Emerging Topics in Computing</i> , 2021 , 1-1	4.1	19
356	Antieavesdropping With Selfish Jamming in Wireless Networks: A Bertrand Game Approach. <i>IEEE Transactions on Vehicular Technology</i> , 2017 , 66, 6268-6279	6.8	18
355	Proactive Failure Recovery for NFV in Distributed Edge Computing. <i>IEEE Communications Magazine</i> , 2019 , 57, 131-137	9.1	18
354	. IEEE Transactions on Computers, 2015 , 64, 1819-1829	2.5	18
353	. IEEE Transactions on Mobile Computing, 2018 , 17, 2041-2054	4.6	18
352	A Selective Privacy-Preserving Approach for Multimedia Data. <i>IEEE MultiMedia</i> , 2017 , 24, 14-25	2.1	18
351	CodePipe: An opportunistic feeding and routing protocol for reliable multicast with pipelined network coding 2012 ,		18
350	DOTA: A Double Truthful Auction for spectrum allocation in dynamic spectrum access 2012,		18
349	A Survey of State-of-the-Art on Blockchains. ACM Computing Surveys, 2021, 54, 1-42	13.4	18
348	. IEEE Transactions on Mobile Computing, 2020 , 19, 288-299	4.6	18
347	Privacy-Preserving Access to Big Data in the Cloud. <i>IEEE Cloud Computing</i> , 2016 , 3, 34-42		17
346	On Social Delay-Tolerant Networking: Aggregation, Tie Detection, and Routing. <i>IEEE Transactions on Parallel and Distributed Systems</i> , 2014 , 25, 1563-1573	3.7	17
345	HAT: history-based auto-tuning MapReduce in heterogeneous environments. <i>Journal of Supercomputing</i> , 2013 , 64, 1038-1054	2.5	17
344	Exploiting Small World Properties for Message Forwarding in Delay Tolerant Networks. <i>IEEE Transactions on Computers</i> , 2015 , 64, 2809-2818	2.5	17

(2010-2014)

343	Cloud forming potential of oligomers relevant to secondary organic aerosols. <i>Geophysical Research Letters</i> , 2014 , 41, 6538-6545	4.9	17	
342	. IEEE Transactions on Computers, 2014 , 1-1	2.5	17	
341	Capacity maximization in cooperative CRNs: Joint relay assignment and channel allocation 2012,		17	
340	The identification of source regions of black carbon at a receptor site off the eastern coast of China. <i>Atmospheric Environment</i> , 2015 , 100, 78-84	5.3	16	
339	Joint middlebox selection and routing for software-defined networking 2016,		16	
338	Byzantine-resilient secure software-defined networks with multiple controllers 2014,		16	
337	Adaptive Parameter Estimation of Power System Dynamic Model Using Modal Information. <i>IEEE Transactions on Power Systems</i> , 2014 , 29, 2854-2861	7	16	
336	Dynamic Itinerary Planning for Mobile Agents with a Content-Specific Approach in Wireless Sensor Networks 2010 ,		16	
335	Multicast lifetime maximization for energy-constrained wireless ad-hoc networks with directional ante	ennas	16	
334	Crowdsourcing-Based Content-Centric Network: A Social Perspective. <i>IEEE Network</i> , 2017 , 31, 28-34	11.4	15	
333	Mobility-Aware and Delay-Sensitive Service Provisioning in Mobile Edge-Cloud Networks. <i>IEEE Transactions on Mobile Computing</i> , 2020 , 1-1	4.6	15	
332	Machine Fault Detection for Intelligent Self-Driving Networks. <i>IEEE Communications Magazine</i> , 2020 , 58, 40-46	9.1	15	
331	Envisioned Wireless Big Data Storage for Low-Earth-Orbit Satellite-Based Cloud. <i>IEEE Wireless Communications</i> , 2018 , 25, 26-31	13.4	15	
330	Evolution of secondary inorganic and organic aerosols during transport: A case study at a regional receptor site. <i>Environmental Pollution</i> , 2016 , 218, 794-803	9.3	15	
329	Spectrum-Aware Network Coded Multicast in Mobile Cognitive Radio Ad Hoc Networks. <i>IEEE Transactions on Vehicular Technology</i> , 2017 , 66, 5340-5350	6.8	15	
328	Joint Optimization of Electricity and Communication Cost for Meter Data Collection in Smart Grid. <i>IEEE Transactions on Emerging Topics in Computing</i> , 2013 , 1, 297-306	4.1	15	
327	MTTF of Composite Web Services 2010 ,		15	
326	Designing energy efficient target tracking protocol with quality monitoring in wireless sensor networks. <i>Journal of Supercomputing</i> , 2010 , 51, 131-148	2.5	15	

		Sono	GUO .
325	Localized Operations for Distributed Minimum Energy Multicast Algorithm in Mobile Ad Hoc Networks. <i>IEEE Transactions on Parallel and Distributed Systems</i> , 2007 , 18, 186-198	3.7	15
324	Task Scheduling for Energy Consumption Constrained Parallel Applications on Heterogeneous Computing Systems. <i>IEEE Transactions on Parallel and Distributed Systems</i> , 2020 , 31, 1165-1182	3.7	15
323	Cross-Cloud MapReduce for Big Data. <i>IEEE Transactions on Cloud Computing</i> , 2020 , 8, 375-386	3.3	15
322	DTD: A Novel Double-Track Approach to Clone Detection for RFID-Enabled Supply Chains. <i>IEEE Transactions on Emerging Topics in Computing</i> , 2017 , 5, 134-140	4.1	14
321	Opportunistic Offloading of Deadline-Constrained Bulk Cellular Traffic in Vehicular DTNs. <i>IEEE Transactions on Computers</i> , 2015 , 64, 3515-3527	2.5	14
320	FDRC: Flow-driven rule caching optimization in software defined networking 2015,		14
319	. IEEE Wireless Communications, 2020 , 27, 38-45	13.4	14
318	Converged Network-Cloud Service Composition with End-to-End Performance Guarantee. <i>IEEE Transactions on Cloud Computing</i> , 2018 , 6, 545-557	3.3	14
317	Fast Coflow Scheduling via Traffic Compression and Stage Pipelining in Datacenter Networks. <i>IEEE Transactions on Computers</i> , 2019 , 68, 1755-1771	2.5	14
316	. IEEE Network, 2019 , 33, 133-137	11.4	14
315	Joint Resource Allocation for Max-Min Throughput in Multicell Networks. <i>IEEE Transactions on Vehicular Technology</i> , 2014 , 63, 4546-4559	6.8	14
314	On the Throughput of Two-Way Relay Networks Using Network Coding. <i>IEEE Transactions on Parallel and Distributed Systems</i> , 2014 , 25, 191-199	3.7	14
313	Maximizing Multicast Communication Lifetime in Wireless Mobile Ad Hoc Networks. <i>IEEE Transactions on Vehicular Technology</i> , 2008 , 57, 2414-2425	6.8	14
312	QoS-aware minimum energy multicast tree construction in wireless ad hoc networks. <i>Ad Hoc Networks</i> , 2004 , 2, 217-229	4.8	14
311	Throughput Maximization in Software-Defined Networks with Consolidated Middleboxes 2016,		14
310	Falcon: Addressing Stragglers in Heterogeneous Parameter Server Via Multiple Parallelism. <i>IEEE Transactions on Computers</i> , 2021 , 70, 139-155	2.5	14
309	Accurate Respiration Monitoring for Mobile Users With Commercial RFID Devices. <i>IEEE Journal on Selected Areas in Communications</i> , 2021 , 39, 513-525	14.2	14
308	OSP 2019 ,		13

307	. IEEE Transactions on Cloud Computing, 2019 , 1-1	3.3	13
306	Reply to Li et al.: Insufficient evidence for the contribution of regional transport to severe haze formation in Beijing. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2015 , 112, E2741	11.5	13
305	A Learning-Based Approach to Intra-Domain QoS Routing. <i>IEEE Transactions on Vehicular Technology</i> , 2020 , 69, 6718-6730	6.8	13
304	. IEEE Wireless Communications, 2020 , 27, 111-117	13.4	13
303	. IEEE Transactions on Network and Service Management, 2017 , 14, 631-645	4.8	13
302	MoRule: Optimized rule placement for mobile users in SDN-enabled access networks 2014,		13
301	Max-Min Lifetime Optimization for Cooperative Communications in Multi-Channel Wireless Networks. <i>IEEE Transactions on Parallel and Distributed Systems</i> , 2014 , 25, 1533-1542	3.7	13
300	A lightweight privacy-preserving protocol using chameleon hashing for secure vehicular communications 2012 ,		13
299	Big Data Analytics for Price Forecasting in Smart Grids 2016 ,		13
298	Deep Reinforcement Learning Based VNF Management in Geo-distributed Edge Computing 2019 ,		13
298 297	Deep Reinforcement Learning Based VNF Management in Geo-distributed Edge Computing 2019 , A Service-Oriented Permissioned Blockchain for the Internet of Things. <i>IEEE Transactions on Services Computing</i> , 2019 , 1-1	4.8	13
	A Service-Oriented Permissioned Blockchain for the Internet of Things. <i>IEEE Transactions on</i>	4.8 6.8	
297	A Service-Oriented Permissioned Blockchain for the Internet of Things. <i>IEEE Transactions on Services Computing</i> , 2019 , 1-1 Energy-Efficient Coordinated Multipoint Scheduling in Green Cloud Radio Access Network. <i>IEEE</i>	·	13
²⁹⁷ ²⁹⁶	A Service-Oriented Permissioned Blockchain for the Internet of Things. <i>IEEE Transactions on Services Computing</i> , 2019 , 1-1 Energy-Efficient Coordinated Multipoint Scheduling in Green Cloud Radio Access Network. <i>IEEE Transactions on Vehicular Technology</i> , 2018 , 67, 9922-9930 Towards a Managed Extensible Control Plane for Knowledge-Based Networking. <i>Lecture Notes in</i>	6.8	13
297296295	A Service-Oriented Permissioned Blockchain for the Internet of Things. <i>IEEE Transactions on Services Computing</i> , 2019 , 1-1 Energy-Efficient Coordinated Multipoint Scheduling in Green Cloud Radio Access Network. <i>IEEE Transactions on Vehicular Technology</i> , 2018 , 67, 9922-9930 Towards a Managed Extensible Control Plane for Knowledge-Based Networking. <i>Lecture Notes in Computer Science</i> , 2006 , 98-111 Particle Routing in Distributed Particle Filters for Large-Scale Spatial Temporal Systems. <i>IEEE</i>	6.8	13 13
297296295294	A Service-Oriented Permissioned Blockchain for the Internet of Things. <i>IEEE Transactions on Services Computing</i> , 2019 , 1-1 Energy-Efficient Coordinated Multipoint Scheduling in Green Cloud Radio Access Network. <i>IEEE Transactions on Vehicular Technology</i> , 2018 , 67, 9922-9930 Towards a Managed Extensible Control Plane for Knowledge-Based Networking. <i>Lecture Notes in Computer Science</i> , 2006 , 98-111 Particle Routing in Distributed Particle Filters for Large-Scale Spatial Temporal Systems. <i>IEEE Transactions on Parallel and Distributed Systems</i> , 2016 , 27, 481-493 Making Big Data Open in Collaborative Edges: A Blockchain-Based Framework with Reduced	6.8	13 13 13
297296295294293	A Service-Oriented Permissioned Blockchain for the Internet of Things. <i>IEEE Transactions on Services Computing</i> , 2019 , 1-1 Energy-Efficient Coordinated Multipoint Scheduling in Green Cloud Radio Access Network. <i>IEEE Transactions on Vehicular Technology</i> , 2018 , 67, 9922-9930 Towards a Managed Extensible Control Plane for Knowledge-Based Networking. <i>Lecture Notes in Computer Science</i> , 2006 , 98-111 Particle Routing in Distributed Particle Filters for Large-Scale Spatial Temporal Systems. <i>IEEE Transactions on Parallel and Distributed Systems</i> , 2016 , 27, 481-493 Making Big Data Open in Collaborative Edges: A Blockchain-Based Framework with Reduced Resource Requirements 2018 , Acid-catalyzed reactions of epoxides for atmospheric nanoparticle growth. <i>Journal of the American</i>	6.8	13 13 13 12

289	MELODY: A Long-Term Dynamic Quality-Aware Incentive Mechanism for Crowdsourcing 2017,		12
288	Efficient Trustworthiness Management for Malicious User Detection in Big Data Collection. <i>IEEE Transactions on Big Data</i> , 2017 , 1-1	3.2	12
287	The variability in the relationship between black carbon and carbon monoxide over the eastern coast of China: BC aging during transport. <i>Atmospheric Chemistry and Physics</i> , 2017 , 17, 10395-10403	6.8	12
286	A Distributed Algorithm for Min-Max Tree and Max-Min Cut Problems in Communication Networks. <i>IEEE/ACM Transactions on Networking</i> , 2010 , 18, 1067-1076	3.8	12
285	Redundancy Avoidance for Big Data in Data Centers: A Conventional Neural Network Approach. <i>IEEE Transactions on Network Science and Engineering</i> , 2020 , 7, 104-114	4.9	12
284	Joint Computation Offloading and Routing Optimization for UAV-Edge-Cloud Computing Environments 2018 ,		12
283	Traffic scheduling for deep packet inspection in software-defined networks. <i>Concurrency Computation Practice and Experience</i> , 2017 , 29, e3967	1.4	12
282	Effects of continental anthropogenic sources on organic aerosols in the coastal atmosphere of East China. <i>Environmental Pollution</i> , 2017 , 229, 350-361	9.3	11
281	2018,		11
280	Data-Driven Intelligent Future Network: Architecture, Use Cases, and Challenges. <i>IEEE Communications Magazine</i> , 2019 , 57, 34-40	9.1	11
280 279		9.1	11
	Communications Magazine, 2019, 57, 34-40 Fine-grained resource allocation for cooperative device-to-device communication in cellular		
279	Communications Magazine, 2019, 57, 34-40 Fine-grained resource allocation for cooperative device-to-device communication in cellular networks. IEEE Wireless Communications, 2014, 21, 35-40 On the Throughput of Feedbackless Segmented Network Coding in Delay Tolerant Networks. IEEE	13.4	11
²⁷⁹ ₂₇₈	Fine-grained resource allocation for cooperative device-to-device communication in cellular networks. <i>IEEE Wireless Communications</i> , 2014 , 21, 35-40 On the Throughput of Feedbackless Segmented Network Coding in Delay Tolerant Networks. <i>IEEE Wireless Communications Letters</i> , 2012 , 1, 93-96 Joint optimization of VM placement and request distribution for electricity cost cut in	13.4	11
279 278 277	Fine-grained resource allocation for cooperative device-to-device communication in cellular networks. <i>IEEE Wireless Communications</i> , 2014 , 21, 35-40 On the Throughput of Feedbackless Segmented Network Coding in Delay Tolerant Networks. <i>IEEE Wireless Communications Letters</i> , 2012 , 1, 93-96 Joint optimization of VM placement and request distribution for electricity cost cut in geo-distributed data centers 2015 , Joint relay assignment and channel allocation for energy-efficient cooperative communications	13.4	11 11 11
279278277276	Fine-grained resource allocation for cooperative device-to-device communication in cellular networks. IEEE Wireless Communications, 2014, 21, 35-40 On the Throughput of Feedbackless Segmented Network Coding in Delay Tolerant Networks. IEEE Wireless Communications Letters, 2012, 1, 93-96 Joint optimization of VM placement and request distribution for electricity cost cut in geo-distributed data centers 2015, Joint relay assignment and channel allocation for energy-efficient cooperative communications 2013,	13.4	11 11 11
279 278 277 276 275	Fine-grained resource allocation for cooperative device-to-device communication in cellular networks. IEEE Wireless Communications, 2014, 21, 35-40 On the Throughput of Feedbackless Segmented Network Coding in Delay Tolerant Networks. IEEE Wireless Communications Letters, 2012, 1, 93-96 Joint optimization of VM placement and request distribution for electricity cost cut in geo-distributed data centers 2015, Joint relay assignment and channel allocation for energy-efficient cooperative communications 2013, A particle swarm optimization algorithm for resource allocation in femtocell networks 2012,	13.4 5.9	11 11 11 11

(2007-2015)

271	Aggregation on the fly: reducing traffic for big data in the cloud. IEEE Network, 2015, 29, 17-23	11.4	10
270	An Application Layer Protocol for Energy-Efficient Bandwidth Aggregation with Guaranteed Quality-of-Experience. <i>IEEE Transactions on Parallel and Distributed Systems</i> , 2015 , 26, 1538-1546	3.7	10
269	. IEEE Network, 2017 , 31, 40-47	11.4	10
268	Optimal Transmission Scheduling of Cooperative Communications with a Full-Duplex Relay. <i>IEEE Transactions on Parallel and Distributed Systems</i> , 2014 , 25, 2353-2363	3.7	10
267	Dynamic segmented network coding for reliable data dissemination in delay tolerant networks 2012 ,		10
266	Green communications and computing networks [Series Editorial] 2016 , 54, 106-107		10
265	Heterogeneity-aware Gradient Coding for Straggler Tolerance 2019,		10
264	Coflow-Like Online Data Acquisition from Low-Earth-Orbit Datacenters. <i>IEEE Transactions on Mobile Computing</i> , 2020 , 19, 2743-2760	4.6	10
263	SDN-Based Resource Allocation in Edge and Cloud Computing Systems: An Evolutionary Stackelberg Differential Game Approach. <i>IEEE/ACM Transactions on Networking</i> , 2022 , 1-16	3.8	10
262	Efficient Data Placement and Replication for QoS-Aware Approximate Query Evaluation of Big Data Analytics. <i>IEEE Transactions on Parallel and Distributed Systems</i> , 2019 , 30, 2677-2691	3.7	9
261	Nothing Blocks Me: Precise and Real-Time LOS/NLOS Path Recognition in RFID Systems. <i>IEEE Internet of Things Journal</i> , 2019 , 6, 5814-5824	10.7	9
260	Big Data and Emergency Management: Concepts, Methodologies, and Applications. <i>IEEE Transactions on Big Data</i> , 2020 , 1-1	3.2	9
259	Simulated microgravity significantly altered metabolism in epidermal stem cells. <i>In Vitro Cellular and Developmental Biology - Animal</i> , 2020 , 56, 200-212	2.6	9
258	Minimum-energy reprogramming with guaranteed quality-of-sensing in software-defined sensor networks 2014 ,		9
257	Novel z-domain precoding method for blind separation of spatially correlated signals. <i>IEEE Transactions on Neural Networks and Learning Systems</i> , 2013 , 24, 94-105	10.3	9
256	Service provisioning update scheme for mobile application users in a cloudlet network 2017,		9
255	Maximum Lifetime Broadcast and Multicast Routing in Unreliable Wireless Ad-Hoc Networks 2010 ,		9
254	Tree-Based Distributed Multicast Algorithms for Directional Communications and Lifetime Optimization in Wireless Ad Hoc Networks. <i>Eurasip Journal on Wireless Communications and Networking</i> , 2007 , 2007, 1	3.2	9

		Sono	G Guo
253	Effect of simulated microgravity on metabolism of HGC-27 gastric cancer cells. <i>Oncology Letters</i> , 2020 , 19, 3439-3450	2.6	9
252	Comparison of Secondary Organic Aerosol Estimation Methods. <i>Acta Chimica Sinica</i> , 2014 , 72, 658	3.3	9
251	Optimal Connected Cruise Control With Arbitrary Communication Delays. <i>IEEE Systems Journal</i> , 2020 , 14, 2913-2924	4.3	9
250	Falcon: Towards Computation-Parallel Deep Learning in Heterogeneous Parameter Server 2019,		9
249	Multi-Controller Resource Management for Software-Defined Wireless Networks. <i>IEEE Communications Letters</i> , 2019 , 23, 506-509	3.8	9
248	Enabling Heterogeneous Network Function Chaining. <i>IEEE Transactions on Parallel and Distributed Systems</i> , 2019 , 30, 842-854	3.7	9
247	When Green Energy Meets Cloud Radio Access Network: Joint Optimization Towards Brown Energy Minimization. <i>Mobile Networks and Applications</i> , 2019 , 24, 962-970	2.9	9
246	Software-Defined Green 5G System for Big Data. <i>IEEE Communications Magazine</i> , 2018 , 56, 116-123	9.1	9
245	Online Green Data Gathering from Geo-Distributed IoT Networks via LEO Satellites 2018,		9
244	Temporal Factor-Aware Video Affective Analysis and Recommendation for Cyber-Based Social Media. <i>IEEE Transactions on Emerging Topics in Computing</i> , 2017 , 5, 412-424	4.1	8
243	Joint Workload Scheduling and Energy Management for Green Data Centers Powered by Fuel Cells. <i>IEEE Transactions on Green Communications and Networking</i> , 2019 , 3, 397-406	4	8
242	Joint optimization on switch activation and flow routing towards energy efficient software defined data center networks 2016 ,		8
241	Machine-Learning-Based Online Distributed Denial-of-Service Attack Detection Using Spark Streaming 2018 ,		8
240	Order-Optimal Information Dissemination in MANETs via Network Coding. <i>IEEE Transactions on Parallel and Distributed Systems</i> , 2014 , 25, 1841-1851	3.7	8
239	Social-Aware Relay Node Selection in Delay Tolerant Networks 2013 ,		8
238	Cost Minimization for Big Data Processing in Geo-Distributed Data Centers. <i>Wireless Networks</i> , 2015 , 59-78	0.6	8
237	Lifetime optimization for reliable broadcast and multicast in wirelessad hocnetworks. <i>Wireless Communications and Mobile Computing</i> , 2014 , 14, 221-231	1.9	8
236	On the maximum throughput of two-hop wireless network coding 2011 ,		8

235	Simulation software as a service and Service-Oriented simulation experiment 2011,		8
234	Exploring the Multicast Lifetime Capacity of WANETs with Directional Multibeam Antennas 2009,		8
233	Approximation algorithms for longest-lived directional multicast communications in WANETs 2007,		8
232	Empowering Edge Intelligence by Air-Ground Integrated Federated Learning. <i>IEEE Network</i> , 2021 , 35, 34-41	11.4	8
231	Challenges and Solutions for the Satellite Tracking, Telemetry, and Command System. <i>IEEE Wireless Communications</i> , 2020 , 27, 12-18	13.4	8
230	Petrel: Heterogeneity-Aware Distributed Deep Learning Via Hybrid Synchronization. <i>IEEE Transactions on Parallel and Distributed Systems</i> , 2021 , 32, 1030-1043	3.7	8
229	Stackelberg Differential Game Based Resource Sharing in Hierarchical Fog-Cloud Computing 2019 ,		8
228	Service Provisioning for UAV-Enabled Mobile Edge Computing. <i>IEEE Journal on Selected Areas in Communications</i> , 2021 , 1-1	14.2	8
227	A Survey of Intelligent Network Slicing Management for Industrial IoT: Integrated Approaches for Smart Transportation, Smart Energy, and Smart Factory. <i>IEEE Communications Surveys and Tutorials</i> , 2022 , 1-1	37.1	8
226	Optimization of Deployable Base Stations With Guaranteed QoE in Disaster Scenarios. <i>IEEE Transactions on Vehicular Technology</i> , 2017 , 66, 6536-6552	6.8	7
225	Big Data Analytics by CrowdLearning: Architecture and Mechanism Design. <i>IEEE Network</i> , 2020 , 34, 143-1	k 47 4	7
224	A \${Q}\$ -Learning Based Framework for Congested Link Identification. <i>IEEE Internet of Things Journal</i> , 2019 , 6, 9668-9678	10.7	7
223	Load balancing for privacy-preserving access to big data in cloud 2014 ,		7
222	Optimal transmission strategy for sensors to defend against eavesdropping and jamming attacks 2017 ,		7
221	On the Multicast Capacity in Energy-Constrained Lossy Wireless Networks by Exploiting Intrabatch and Interbatch Network Coding. <i>IEEE Transactions on Parallel and Distributed Systems</i> , 2013 , 24, 2251-226	₫ 0	7
220	Architecture-based Performance Evaluation of Genetic Algorithms on Multi/Many-core Systems 2011 ,		7
219	Elastic Resource Allocation against Imbalanced Transaction Assignments in Sharding-based Permissioned Blockchains. <i>IEEE Transactions on Parallel and Distributed Systems</i> , 2022 , 1-1	3.7	7
218	Research on Secondary Organic Aerosols Basing on Field Measurement. <i>Acta Chimica Sinica</i> , 2014 , 72, 145	3.3	7

217	. IEEE Wireless Communications, 2020 , 27, 122-128	13.4	7
216	. IEEE Transactions on Multimedia, 2016 , 18, 1749-1761	6.6	7
215	Energy-Efficient Power Control for Device-to-Device Communications with Max-Min Fairness 2016,		7
214	A Cyclic Game for Joint Cooperation and Competition of Edge Resource Allocation 2019 ,		7
213	Resilient information management system for disaster situations 2017,		6
212	ReActor: Real-time and Accurate Contactless Gesture Recognition with RFID 2019,		6
211	Relay placement for latency minimization in delay tolerant networks 2015,		6
21 0	Online unicasting and multicasting in software-defined networks. <i>Computer Networks</i> , 2018 , 132, 26-39	5.4	6
209	CoMan: Managing Bandwidth Across Computing Frameworks in Multiplexed Datacenters. <i>IEEE Transactions on Parallel and Distributed Systems</i> , 2018 , 29, 1013-1029	3.7	6
208	Power consumption analysis of video streaming in 4G LTE networks. Wireless Networks, 2018, 24, 3083-	3 <u>0</u> 98	6
207	Swallow: Joint Online Scheduling and Coflow Compression in Datacenter Networks 2018,		6
206	CACC: A context-aware congestion control approach in smartphone networks 2014 , 52, 42-48		6
205	Parallel Agent-as-a-Service (P-AaaS) Based Geospatial Service in the Cloud. Remote Sensing, 2017, 9, 382	25	6
204	eBay in the Clouds: False-Name-Proof Auctions for Cloud Resource Allocation 2015 ,		6
203	On the Multicast Lifetime of WANETs with Multibeam Antennas: Formulation, Algorithms, and Analysis. <i>IEEE Transactions on Computers</i> , 2014 , 63, 1988-2001	2.5	6
202	Deadline-constrained content distribution in vehicular delay tolerant networks 2012,		6
201	WSNp1-7: Distributed Multicast Algorithms for Lifetime Maximization in Wireless Ad Hoc Networks with Omni-directional and Directional Antennas. <i>IEEE Global Telecommunications Conference (GLOBECOM)</i> , 2006 ,		6
200	Mechanism of New Particle Formation and Growth as well as Environmental Effects under Complex Air Pollution in China. <i>Acta Chimica Sinica</i> , 2016 , 74, 385	3.3	6

199	Towards Real-time Cooperative Deep Inference over the Cloud and Edge End Devices 2020 , 4, 1-24		6
198	A Graph Learning based Approach for Identity Inference in DApp Platform Blockchain. <i>IEEE Transactions on Emerging Topics in Computing</i> , 2020 , 1-1	4.1	6
197	Congestion control in social-based sensor networks: A social network perspective. <i>Peer-to-Peer Networking and Applications</i> , 2016 , 9, 681-691	3.1	5
196	Augmenting Drive-Thru Internet via Reinforcement Learning-Based Rate Adaptation. <i>IEEE Internet of Things Journal</i> , 2020 , 7, 3114-3123	10.7	5
195	Cooperative QoS Beamforming for Multicast Transmission in Terrestrial-Satellite Networks 2017,		5
194	Stochastic Scheduling Towards Cost Efficient Network Function Virtualization in Edge Cloud 2018,		5
193	ran-GJS 2018 ,		5
192	2019,		5
191	Joint optimization of task mapping and routing for service provisioning in distributed datacenters 2014 ,		5
190	Maximum-Lifetime Coding Tree for Multicast in Lossy Wireless Networks. <i>IEEE Wireless Communications Letters</i> , 2013 , 2, 295-298	5.9	5
189	TDRSS Scheduling Algorithm for Non-Uniform Time-Space Distributed Missions 2017,		5
188	A multi-attribute decision making approach to congestion control in delay tolerant networks 2014 ,		5
187	Synchronous machine inertia constants updating using Wide Area Measurements 2012,		5
186	Vehicular cloud computing: A survey 2013 ,		5
185	. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2013, 43, 379-389	7.3	5
184	A Compromise-Resilient Group Rekeying Scheme for Hierarchical Wireless Sensor Networks 2010 ,		5
183	A dynamic data driven application system for wildfire spread simulation 2009,		5
182	HARVEST: A Task-objective Efficient Data Collection Scheme in Wireless Sensor and Actor Networks 2011 ,		5

181	Improving throughput by fine-grained channel allocation in cooperative wireless networks 2012,		5
180	A scalable distributed multicast algorithm for lifetime maximization in large-scale resource-limited multihop wireless networks 2006 ,		5
179	Formulation of optimal tree construction for maximum lifetime multicasting in wireless ad-hoc networks with adaptive antennas		5
178	Online Learning for Distributed Computation Offloading in Wireless Powered Mobile Edge Computing Networks. <i>IEEE Transactions on Parallel and Distributed Systems</i> , 2022 , 33, 1841-1855	3.7	5
177	. IEEE Network, 2020 , 34, 8-13	11.4	5
176	Incentive Mechanism Design for Federated Learning: Challenges and Opportunities. <i>IEEE Network</i> , 2021 , 35, 310-317	11.4	5
175	Online Scheduling of Mobile Stations for Disaster Management 2016 ,		5
174	. IEEE Transactions on Multimedia, 2021 , 23, 524-537	6.6	5
173	2018,		5
172	Multicast in multi-channel cognitive radio ad hoc networks: Challenges and research aspects. <i>Computer Communications</i> , 2018 , 132, 10-16	5.1	5
171	Energy Minimization of Resource Allocation in Cloud-Based Satellite Communication Networks. <i>IEEE Communications Letters</i> , 2019 , 23, 2353-2356	3.8	4
170	Influence maximization by leveraging the crowdsensing data in information diffusion network. <i>Journal of Network and Computer Applications</i> , 2019 , 136, 11-21	7.9	4
169	. IEEE Transactions on Vehicular Technology, 2015 , 64, 2615-2626	6.8	4
168	A Cyclic Game for Service-Oriented Resource Allocation in Edge Computing. <i>IEEE Transactions on Services Computing</i> , 2020 , 13, 723-734	4.8	4
167	Potential of secondary aerosol formation from Chinese gasoline engine exhaust. <i>Journal of Environmental Sciences</i> , 2018 , 66, 348-357	6.4	4
166	Modeap: Moving Desktop Application to Mobile Cloud Service. <i>Mobile Networks and Applications</i> , 2014 , 19, 563-571	2.9	4
165	Optimal VM placement in data centres with architectural and resource constraints. <i>International Journal of Autonomous and Adaptive Communications Systems</i> , 2015 , 8, 392	0.6	4
164	Online Internet Traffic Measurement and Monitoring Using Spark Streaming 2017,		4

(2021-2014)

163	On the Multicast Lifetime of WANETs with Multibeam Antennas: Formulation, Algorithms, and Analysis. <i>IEEE Transactions on Computers</i> , 2014 , 1-1	2.5	4	
162	Coding-Aware Proportional-Fair Scheduling in OFDMA Relay Networks. <i>IEEE Transactions on Parallel and Distributed Systems</i> , 2013 , 24, 1727-1740	3.7	4	
161	The Exploration of Network Coding in IEEE 802.15.4 Networks. <i>International Journal of Digital Multimedia Broadcasting</i> , 2011 , 2011, 1-9	0.8	4	
160	Performance Analysis of Resource Allocation Algorithms Using Cache Technology for Pervasive Computing System 2008 ,		4	
159	A Constraint Formulation for Minimum-Energy Multicast Routing in Wireless Multihop Ad-hoc Networks. <i>Wireless Networks</i> , 2006 , 12, 23-32	2.5	4	
158	Minimum-energy multicast routing in static wireless ad hoc networks		4	
157	Autonomous Rate Control for Mobile Internet of Things: A Deep Reinforcement Learning Approach 2020 ,		4	
156	Why queue up? 2020,		4	
155	Blockchain-Based Participant Selection for Federated Learning. <i>Communications in Computer and Information Science</i> , 2020 , 112-125	0.3	4	
154	Adaptive Semantic Interoperability Strategies for Knowledge Based Networking 2007 , 1187-1199		4	
153	. IEEE Internet of Things Journal, 2020 , 7, 5690-5694	10.7	4	
152	Fast and Reliable Dynamic Tag Estimation in Large-Scale RFID Systems. <i>IEEE Internet of Things Journal</i> , 2021 , 8, 1651-1661	10.7	4	
151	Adaptive Federated Learning on Non-IID Data with Resource Constraint. <i>IEEE Transactions on Computers</i> , 2021 , 1-1	2.5	4	
150	Partial Synchronization to Accelerate Federated Learning over Relay-Assisted Edge Networks. <i>IEEE Transactions on Mobile Computing</i> , 2021 , 1-1	4.6	4	
149	A Comprehensive Survey on Training Acceleration for Large Machine Learning Models in IoTs. <i>IEEE Internet of Things Journal</i> , 2021 , 1-1	10.7	4	
148	LOSP: Overlap Synchronization Parallel With Local Compensation for Fast Distributed Training. <i>IEEE Journal on Selected Areas in Communications</i> , 2021 , 39, 2541-2557	14.2	4	
147	On-Device Learning Systems for Edge Intelligence: A Software and Hardware Synergy Perspective. <i>IEEE Internet of Things Journal</i> , 2021 , 8, 11916-11934	10.7	4	
146	Blockchain-Based VEC Network Trust Management: A DRL Algorithm for Vehicular Service Offloading and Migration. <i>IEEE Transactions on Vehicular Technology</i> , 2021 , 70, 8148-8160	6.8	4	

145	Emergency Networks and Future Public Safety Systems. <i>Wireless Communications and Mobile Computing</i> , 2019 , 2019, 1-2	1.9	3
144	On-demand Customizable Wireless Sensor Network. <i>Procedia Computer Science</i> , 2015 , 52, 302-309	1.6	3
143	Reply to Cao and Zhang: Tightening nonfossil emissions alone is inefficient for PM2.5 mitigation in China. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2015 , 112, E1403	11.5	3
142	Service Function Chain Deployment and Network Flow Scheduling in Geo-Distributed Data Centers. <i>IEEE Transactions on Network Science and Engineering</i> , 2020 , 7, 2587-2597	4.9	3
141	Guest Editorial Special Section on AI-Driven Developments in 5G-Envisioned Industrial Automation: Big Data Perspective. <i>IEEE Transactions on Industrial Informatics</i> , 2020 , 16, 1291-1295	11.9	3
140	Adaptive Adjustment with Semantic Feature Space for Zero-shot Recognition 2019,		3
139	Trajectory and Data Planning for Mobile Relay to Enable Efficient Internet Access after Disasters 2014 ,		3
138	ANTS: Pushing the rapid event notification in wireless sensor and actor networks 2013,		3
137	Preemptive dynamic scheduling algorithm for data relay satellite systems 2017,		3
136	Green Communications and Computing Networks 2017 , 55, 12-13		3
135	Crowdsourcing on mobile cloud: Cost minimization of joint data acquisition and processing 2014,		3
134	Cooperative Device-to-Device Communication in Cognitive Radio Cellular Networks. <i>SpringerBriefs in Computer Science</i> , 2014 ,	0.4	3
133	Performance evaluation of network coding in disruption tolerant networks 2010,		3
132	Distributed Approximation Algorithms for Longest-Lived Multicast in WANETs with Directional Antennas. <i>IEEE Transactions on Wireless Communications</i> , 2010 , 9, 2227-2237	9.6	3
131	A scalable key pre-distribution mechanism for large-scale wireless sensor networks. <i>Concurrency Computation Practice and Experience</i> , 2009 , 21, 1373-1387	1.4	3
130	Performance bounds for Turbo-coded SC-PSK/FSO communications over strong turbulence channels 2011 ,		3
129	Segmented Network Coding for Stream-Like Applications in Delay Tolerant Networks 2011,		3
128	Analysis of the Availability of Composite Web Services 2009 ,		3

(2013-2009)

127	A message complexity oriented design of distributed algorithm for long-lived multicasting in wireless sensor networks. <i>International Journal of Sensor Networks</i> , 2009 , 6, 180	0.8	3
126	Pedagogical Data Federation toward Education 4.0 2020 ,		3
125	Big Data Processing With Minimal Delay and Guaranteed Data Resolution in Disaster Areas. <i>IEEE Transactions on Vehicular Technology</i> , 2019 , 68, 3833-3842	6.8	3
124	Error-Compensated Sparsification for Communication-Efficient Decentralized Training in Edge Environment. <i>IEEE Transactions on Parallel and Distributed Systems</i> , 2021 , 1-1	3.7	3
123	IEEE Access Special Section Editorial: The Internet of Energy: Architectures, Cyber Security, and Applications. <i>IEEE Access</i> , 2018 , 6, 79272-79275	3.5	3
122	IEEE Access Special Section Editorial: The Internet of Energy: Architectures, Cyber Security, and Applications Part II. <i>IEEE Access</i> , 2018 , 6, 79276-79279	3.5	3
121	Reopening International Borders without Quarantine: Contact Tracing Integrated Policy against COVID-19. International Journal of Environmental Research and Public Health, 2021 , 18,	4.6	3
120	Decentralized Federated Learning for UAV Networks: Architecture, Challenges, and Opportunities. <i>IEEE Network</i> , 2021 , 35, 156-162	11.4	3
119	. IEEE Systems Journal, 2020 , 1-12	4.3	2
118	Guest Editorial Special Issue on Large-Scale Internet of Things. <i>IEEE Internet of Things Journal</i> , 2016 , 3, 439-440	10.7	2
117	AMS-SFE: Towards an Alignment of Manifold Structures via Semantic Feature Expansion for Zero-shot Learning 2019 ,		2
116	An Intelligent Approach to Energy Efficient Transportation and QoS Routing 2019,		2
115	CMU-VP: Cooperative Multicast and Unicast With Viewport Prediction for VR Video Streaming in 5G H-CRAN. <i>IEEE Access</i> , 2019 , 7, 134187-134197	3.5	2
114	Delay and Capacity Analysis in MANETs with Correlated Mobility and \${f}\$ -Cast Relay. <i>IEEE Transactions on Parallel and Distributed Systems</i> , 2014 , 25, 2829-2839	3.7	2
113	Quantitative analysis of MTTF of composite web services 2014 , 37, 506-516		2
112	Maximizing Lifetime of Data-Gathering Trees with Different Aggregation Modes in WSNs 2015,		2
111	Delay minimization for reliable data collection on overhead transmission lines in smart grid 2013,		2
110	Stochastic analysis on epidemic dissemination of lifetime-controlled messages in DTNs 2013,		2

109	A reliable task assignment strategy for spatial crowdsourcing in big data environment 2017,		2
108	Robust Secure Beamforming for Cognitive Satellite Terrestrial Networks at Millimeter-Wave Frequency 2017 ,		2
107	A General Communication Cost Optimization Framework for Big Data Stream Processing in Geo-Distributed Data Centers. <i>Wireless Networks</i> , 2015 , 79-100	0.6	2
106	Delay minimization by exploring full-duplex capacity and relay-based cooperative scheduling in WLANs. <i>Journal of Network and Computer Applications</i> , 2014 , 46, 407-417	7.9	2
105	DASN 2014 ,		2
104	Energy-Efficient Transmission Scheduling in Mobile Phones using Machine Learning and Participatory Sensing. <i>IEEE Transactions on Vehicular Technology</i> , 2014 , 1-1	6.8	2
103	Deactivation-controlled epidemic routing in disruption tolerant networks with multiple sinks 2014,		2
102	Leverage parking cars in a two-tier data center 2013 ,		2
101	Special Issue on Cyber-Physical Systems (CPS)Part I. <i>IEEE Transactions on Emerging Topics in Computing</i> , 2013 , 1, 6-9	4.1	2
100	Energy Efficiency of a Multi-Core Processor by Tag Reduction. <i>Journal of Computer Science and Technology</i> , 2011 , 26, 491-503	1.7	2
99	A Trade-Off Approach to Optimal Resource Allocation Algorithm with Cache Technology in Ubiquitous Computing Environment 2009 ,		2
98	A framework for the multicast lifetime maximization problem in energy-constrained wireless ad-hoc networks. <i>Wireless Networks</i> , 2009 , 15, 313-329	2.5	2
97	A Flexible and Efficient Key Distribution Scheme for Renewable Wireless Sensor Networks. <i>Eurasip Journal on Wireless Communications and Networking</i> , 2009 , 2009,	3.2	2
96	A probabilistic-approach based resource allocation algorithm in pervasive computing systems 2010 ,		2
95	Bridge the Trustworthiness Gap amongst Multiple Domains: A Practical Blockchain-based Approach 2020 ,		2
94	Multi-Agent Actor-Critic Reinforcement Learning based In-network Load Balance 2020,		2
93	Capacity Maximization of Cooperative Device-to-Device Communication. <i>SpringerBriefs in Computer Science</i> , 2014 , 19-39	0.4	2
92	The effects of microgravity on the digestive system and the new insights it brings to the life sciences. <i>Life Sciences in Space Research</i> , 2020 , 27, 74-82	2.4	2

91	2020,		2
90	Fault-Tolerant Visual Secret Sharing Schemes without Pixel Expansion. <i>Applied Sciences</i> (Switzerland), 2016 , 6, 18	2.6	2
89	Efficient Rate Adaptation for 802.11af TVWS Vehicular Access via Deep Learning 2019,		2
88	Poster Abstract: C-Continuum: Edge-to-Cloud computing for distributed AI 2019 ,		2
87	Improving Power Efficiency for Online Video Streaming Service: A Self-Adaptive Approach. <i>IEEE Transactions on Sustainable Computing</i> , 2019 , 4, 308-313	3.5	2
86	Canary: Decentralized Distributed Deep Learning Via Gradient Sketch and Partition in Multi-Interface Networks. <i>IEEE Transactions on Parallel and Distributed Systems</i> , 2021 , 32, 900-917	3.7	2
85	L4L: Experience-Driven Computational Resource Control in Federated Learning. <i>IEEE Transactions on Computers</i> , 2021 , 1-1	2.5	2
84	. IEEE Network, 2021 , 35, 356-364	11.4	2
83	Energy Management of Data Centers Powered by Fuel Cells and Heterogeneous Energy Storage 2018 ,		2
82	Analyzing and Disentangling Interleaved Interrupt-Driven IoT Programs. <i>IEEE Internet of Things Journal</i> , 2019 , 6, 5376-5386	10.7	1
81	Guest Editorial Advances in Satellite Communications Part 1. <i>IEEE Journal on Selected Areas in Communications</i> , 2018 , 36, 217-220	14.2	1
80	Demand-Addressable Sensor Network: Toward Large-Scale Active Information Acquisition. <i>IEEE Sensors Journal</i> , 2016 , 16, 7421-7432	4	1
79	Green Communications and Computing Networks 2018 , 56, 138-139		1
78	Dual: Deploy stateful virtual network function chains by jointly allocating data-control traffic. <i>Computer Networks</i> , 2019 , 162, 106868	5.4	1
77	EE-AE: An Exclusivity Enhanced Unsupervised Feature Learning Approach 2019,		1
76	A measurement-based study on user management in private BitTorrent communities. <i>Concurrency Computation Practice and Experience</i> , 2013 , 25, 2052-2066	1.4	1
75	A dynamical Deterministic Packet Marking scheme for DDoS traceback 2013 ,		1
74	Traffic-aware task placement with guaranteed job completion time for geo-distributed big data 2017 ,		1

73	Optimal Satellite Scheduling with Critical Node Analysis 2017 ,		1
72	Towards Latency-Aware Data Acquisition in Wireless Sensor Network 2014 ,		1
71	Modeling content acquisition in two-dimensional content-centric MANETs 2014,		1
70	Latency-optimized broadcast in mobile ad hoc networks without node coordination 2014,		1
69	Neighbor Similarity Trust against Sybil Attack in P2P E-commerce 2012 ,		1
68	Delay and Capacity Trade-offs in Mobile Wireless Networks with Infrastructure Support. <i>Journal of Computer Science and Technology</i> , 2012 , 27, 328-340	1.7	1
67	QoS-Aware Task Placement in Geo-distributed Data Centers with Low OPEX Using Dynamic Frequency Scaling 2013 ,		1
66	Special Issue on Cyber-Physical Systems (CPS)Part II. <i>IEEE Transactions on Emerging Topics in Computing</i> , 2013 , 1, 203-206	4.1	1
65	IF-THEN in the Internet of Things 2011 ,		1
64	Energy Minimization on Thread-Level Speculation in Multicore Systems 2010,		1
63	An energy aware MAC protocol for Wireless Personal Area Networks 2010 ,		1
62	Towards Context-Aware Ubiquitous Transaction Processing: A Model and Algorithm 2011 ,		1
61	I-Cache Tag Reduction for Low Power Chip Multiprocessor 2009 ,		1
60	2011,		1
59	A pipeline-based approach for long transaction processing in web service environments. <i>International Journal of Web and Grid Services</i> , 2011 , 7, 190	1.4	1
58	All-to-all throughput maximization in wireless relay networks with multiple packet reception 2012,		1
57	An efficient and scalable key distribution mechanism for hierarchical wireless sensor networks 2009 ,		1
56	Improving Scalability for Longest-lived Multicast Using Localized Operations in WANETs 2007,		1

(2021-2006)

55	Joint optimization of energy consumption and antenna orientation for multicasting in static ad hoc wireless networks. <i>IEEE Transactions on Wireless Communications</i> , 2006 , 5, 2563-2568	9.6	1
54	A dynamic multicast tree reconstruction algorithm for minimum-energy multicasting in wireless ad hoc networks		1
53	On upper bound and heuristics for multicast lifetime maximization using dynamic routing in energy-limited wireless ad hoc networks 2005 ,		1
52	Workload-Aware Caching Policy for Information-Centric Networking. <i>IEICE Transactions on Communications</i> , 2014 , E97.B, 2157-2166	0.5	1
51	Software Defined Networking II: NFV. SpringerBriefs in Computer Science, 2020, 77-100	0.4	1
50	The Core Degree Based Tag Reduction on Chip Multiprocessor to Balance Energy Saving and Performance Overhead. <i>Lecture Notes in Computer Science</i> , 2010 , 358-372	0.9	1
49	A Remote Mutual Situation-Aware Model by Detecting Entrance and Exit Behaviors in Smart Home. <i>Lecture Notes in Electrical Engineering</i> , 2012 , 179-187	0.2	1
48	Proactive Link Adaptation for Marine Internet of Things in TV White Space 2020,		1
47	A Lightweight Integrity Authentication Approach for RFID-enabled Supply Chains 2021,		1
46	Autophagy in Gastric Mucosa: The Dual Role and Potential Therapeutic Target. <i>BioMed Research International</i> , 2021 , 2021, 2648065	3	1
45	A Queueing Analysis of the Opportunistic Vehicle-to-Vehicle Communication 2019,		1
44	Service Demand Prediction with Incomplete Historical Data 2019,		1
43	Intermittent Pulling with Local Compensation for Communication-Efficient Distributed Learning. <i>IEEE Transactions on Emerging Topics in Computing</i> , 2021 , 1-1	4.1	1
42	. IEEE Transactions on Computational Social Systems, 2021 , 1-11	4.5	1
41	LTSM: Lightweight and Trusted Sharing Mechanism of IoT Data in Smart City. <i>IEEE Internet of Things Journal</i> , 2021 , 1-1	10.7	1
40	Spatial Angular Spectrum Sensing for Non-Geostationary Satellite Systems 2018,		1
39	Convergence of Edge Computing and Next Generation Networking. <i>Peer-to-Peer Networking and Applications</i> , 2021 , 14, 3891	3.1	1

37	Edge Learning. ACM Computing Surveys, 2022, 54, 1-36	13.4	1
36	\$run\$ runData: Re-Distributing Data via Piggybacking for Geo-Distributed Data Analytics Over Edges. <i>IEEE Transactions on Parallel and Distributed Systems</i> , 2021 , 1-1	3.7	1
35	Disclosing and Locating Concurrency Bugs of Interrupt-Driven IoT Programs. <i>IEEE Internet of Things Journal</i> , 2019 , 6, 8945-8957	10.7	0
34	A Secure and Scalable Rekeying Mechanism for Hierarchical Wireless Sensor Networks. <i>IEICE Transactions on Information and Systems</i> , 2010 , E93-D, 421-429	0.6	O
33	The Design and Evaluation of a Selective Way Based Trace Cache. <i>Lecture Notes in Computer Science</i> , 2009 , 95-109	0.9	О
32	Spatial-Temporal Learning-Based Artificial Intelligence for IT Operations in the Edge Network. <i>IEEE Network</i> , 2021 , 35, 197-203	11.4	O
31	Green Communications and Computing Networks 2017 , 55, 160-161		
30	Special Issue of the IEEE Transactions on Emerging Topics in Computing on Emerging Mobile and Ubiquitous Systems Part I. <i>IEEE Transactions on Emerging Topics in Computing</i> , 2015 , 3, 5-7	4.1	
29	Advances in Satellite Communications Part 2: Guest Editorial. <i>IEEE Journal on Selected Areas in Communications</i> , 2018 , 36, 967-970	14.2	
28	On-Time Warning Delivery for Vehicular Ad Hoc Networks. <i>Computer</i> , 2014 , 47, 6-6	1.6	
27	Editorial for Special Issue on Social Computing. Mobile Networks and Applications, 2017, 22, 151-152	2.9	
26	Study on the Music Rhythm lambs Relationship Modeling Method. <i>Applied Mechanics and Materials</i> , 2014 , 513-517, 2012-2015	0.3	
25	An efficient and scalable ubiquitous storage scheme for delay-sensitive IT applications. <i>Journal of Intelligent Manufacturing</i> , 2012 , 23, 955-963	6.7	
24	Balanced Bipartite Graph Based Register Allocation for Network Processors in Mobile and Wireless Networks. <i>Mobile Information Systems</i> , 2010 , 6, 65-83	1.4	
23	Tier-Based Scalable and Secure Routing for Wireless Sensor Networks with Mobile Sinks. <i>IEICE Transactions on Information and Systems</i> , 2010 , E93-D, 458-465	0.6	
22	Exact and performance-guaranteed multicast algorithms for lifetime optimization in WANETs. <i>Networks</i> , 2010 , 55, 287-297	1.6	
21	Smartphone Based Emergency Communication 2020 , 131-147		
20	Data-Driven Service Provisioning 2020 , 308-312		

(2021-2020)

19	A Solution for High Availability Memory Access. Lecture Notes in Computer Science, 2020, 122-137	0.9
18	Knowledge-Based Networking. Advances in Systems Analysis, Software Engineering, and High Performance Computing Book Series,232-259	0.4
17	MSCPT: Toward Cross-Place Transportation Mode Recognition Based on Multi-Sensor Neural Network Model. <i>IEEE Transactions on Intelligent Transportation Systems</i> , 2021 , 1-13	6.1
16	Impact of Microgravity on the Skin and the Process of Wound Healing. <i>Microgravity Science and Technology</i> , 2021 , 33, 1	1.6
15	A Performance Guaranteed Distributed Multicast Algorithm for Long-Lived Directional Communications in WANETs. <i>Lecture Notes in Computer Science</i> , 2008 , 439-450	0.9
14	Enhanced Passcode Recognition Based on Press Force and Time Interval. <i>Lecture Notes in Computer Science</i> , 2018 , 315-323	0.9
13	Software Defined Communication. SpringerBriefs in Computer Science, 2020, 37-56	0.4
12	Software Defined Sensing. SpringerBriefs in Computer Science, 2020 , 17-35	0.4
11	Software Defined Networking I: SDN. SpringerBriefs in Computer Science, 2020, 57-76	0.4
10	Proteomic analysis of the effects of simulated microgravity in human gastric mucosal cells <i>Life Sciences in Space Research</i> , 2022 , 32, 26-37	2.4
9	Cloud Networking. Wireless Networks, 2015 , 33-56	0.6
8	Background Introduction. Wireless Networks, 2015, 3-16	0.6
7	A Scalable Multiprocessor Architecture for Pervasive Computing. <i>Lecture Notes in Computer Science</i> , 2011 , 42-51	0.9
6	Cooperative Device-to-Device Communication for Broadcast. <i>SpringerBriefs in Computer Science</i> , 2014 , 61-75	0.4
5	Energy Efficiency of Cooperative Device-to-Device Communication. <i>SpringerBriefs in Computer Science</i> , 2014 , 41-59	0.4
4	Towards Shift Tolerant Visual Secret Sharing Schemes without Pixel Expansion. <i>MATEC Web of Conferences</i> , 2016 , 71, 01002	0.3
3	EIC Editorial. IEEE Open Journal of the Computer Society, 2021 , 2, 1-2	3.6
2	IEEE Access Special Section Editorial: Emerging Trends of Energy and Spectrum Harvesting Technologies. <i>IEEE Access</i> , 2021 , 9, 117673-117678	3.5

Collaborative Machine Learning: Schemes, Robustness, and Privacy. *IEEE Transactions on Neural Networks and Learning Systems*, **2022**, 1-18

10.3