Sergei B Orlinskii

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2313407/publications.pdf

Version: 2024-02-01

38	1,674	17 h-index	35
papers	citations		g-index
38	38	38	2243
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Hydrogen: A Relevant Shallow Donor in Zinc Oxide. Physical Review Letters, 2002, 88, 045504.	7.8	613
2	Photoblinking of Rhodamine 6G in Poly(vinyl alcohol):  Radical Dark State Formed through the Triplet. Journal of Physical Chemistry A, 2003, 107, 6770-6776.	2.5	248
3	Silicon vacancy in SiC as a promising quantum system for single-defect and single-photon spectroscopy. Physical Review B, 2011, 83, .	3.2	185
4	Enormously High Concentrations of Fluorescent Nitrogenâ€Vacancy Centers Fabricated by Sintering of Detonation Nanodiamonds. Small, 2011, 7, 1533-1537.	10.0	62
5	Combination of EPR Measurements and DFT Calculations To Study Nitrate Impurities in the Carbonated Nanohydroxyapatite. Journal of Physical Chemistry A, 2014, 118, 1519-1526.	2.5	41
6	Quantitative Analysis of Lewis Acid Centers of \hat{l}^3 -Alumina by Using EPR of the Adsorbed Anthraquinone as a Probe Molecule: Comparison with the Pyridine, Carbon Monoxide IR, and TPD of Ammonia. Journal of Physical Chemistry C, 2015, 119, 27410-27415.	3.1	41
7	High-Frequency EPR and ENDOR Spectroscopy on Semiconductor Quantum Dots. Applied Magnetic Resonance, 2010, 39, 151-183.	1.2	39
8	In Situ Identification of Various Structural Features of Vanadyl Porphyrins in Crude Oil by High-Field (3.4 T) Electron–Nuclear Double Resonance Spectroscopy Combined with Density Functional Theory Calculations. Energy & Fuels, 2017, 31, 1243-1249.	5.1	39
9	Sic Parvis Magna: Manganese-Substituted Tricalcium Phosphate and Its Biophysical Properties. ACS Biomaterials Science and Engineering, 2019, 5, 6632-6644.	5.2	37
10	Mn-Catalyzed Oxidation of Heavy Oil in Porous Media: Kinetics and Some Aspects of the Mechanism. Energy & Samp; Fuels, 2016, 30, 7731-7737.	5.1	35
11	Conventional, pulsed and high-field electron paramagnetic resonance for studying metal impurities in calcium phosphates of biogenic and synthetic origins. Journal of Magnetism and Magnetic Materials, 2019, 470, 109-117.	2.3	31
12	The Interplay of manganese and nitrate in hydroxyapatite nanoparticles as revealed by pulsed EPR and DFT. Physical Chemistry Chemical Physics, 2015, 17, 20331-20337.	2.8	30
13	A DFT, X- and W-band EPR and ENDOR Study of Nitrogen-Centered Species in (Nano)Hydroxyapatite. Applied Magnetic Resonance, 2014, 45, 1189-1203.	1.2	27
14	Influence of Al on the Structure and in Vitro Behavior of Hydroxyapatite Nanopowders. Journal of Physical Chemistry B, 2019, 123, 9143-9154.	2.6	26
15	Observation of the Triplet Metastable State of Shallow Donor Pairs in AlN Crystals with a Negative- <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>U</mml:mi></mml:math> Behavior: A High-Frequency EPR and ENDOR Study. Physical Review Letters, 2008, 100, 256404.	7.8	25
16	Magnetical and Optical Properties of Nanodiamonds Can Be Tuned by Particles Surface Chemistry: Theoretical and Experimental Study. Journal of Physical Chemistry C, 2014, 118, 25245-25252.	3.1	25
17	display="inline"> <mmi:mrow><mmi:mmultiscripts><mmi:mtext>Zn</mmi:mtext><mmi:mprescripts></mmi:mprescripts><mml:none></mml:none><mml:mrow><mml:mn>67</mml:mn></mml:mrow>and<mml: <="" td="" xmlns:mml="http://www.w3.org/1998/Math/MathML"><td>roath</td><td>19</td></mml:></mmi:mmultiscripts></mmi:mrow>	roath	19
18	display="inline"> < mmkmrow> < mmkmmultiscripts> < mmkmtext> H < mmkmprescripts Paramagnetic Manganese in the Atherosclerotic Plaque of Carotid Arteries. BioMed Research International, 2016, 2016, 1-7.	1.9	17

#	Article	IF	CITATIONS
19	Polytypism driven zero-field splitting of silicon vacancies in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mn>6</mml:mn><mml:mi>H<th>> 8/2nml:m</th><th>raw></th></mml:mi></mml:mrow></mml:math>	> 8/2 nml:m	raw>
20	Electron Paramagnetic Resonance and Electron Nuclear Double Resonance Study of the Paramagnetic Complexes of Anthraquinone on the Surface of \hat{l}^3 -Al ₂ O ₃ . Journal of Physical Chemistry C, 2014, 118, 14998-15003.	3.1	14
21	Radiation-Induced Stable Radicals in Calcium Phosphates: Results of Multifrequency EPR, EDNMR, ESEEM, and ENDOR Studies. Applied Sciences (Switzerland), 2021, 11, 7727.	2.5	14
22	Angstrom-scale probing of paramagnetic centers location in nanodiamonds by ³ He NMR at low temperatures. Physical Chemistry Chemical Physics, 2018, 20, 1476-1484.	2.8	11
23	Study of Electron–Nuclear Interactions in Doped Calcium Phosphates by Various Pulsed EPR Spectroscopy Techniques. ACS Omega, 2021, 6, 25338-25349.	3.5	11
24	Relaxation processes and high-field coherent spin manipulation in color center ensembles in 6 $_{\rm ci>H}$ -SiC. Physical Review B, 2021, 103, .	3.2	10
25	High-Field (3.4 T) ENDOR Investigation of Asphaltenes in Native Oil and Vanadyl Complexes by Asphaltene Adsorption on Alumina Surface. Geofluids, 2019, 2019, 1-9.	0.7	9
26	Electron nuclear interactions in spin-3/2 color centers in silicon carbide: A high-field pulse EPR and ENDOR study. Physical Review B, 2021, 104, .	3.2	9
27	Shallow Donors and Deep-Level Color Centers in Bulk AlN Crystals: EPR, ENDOR, ODMR and Optical Studies. Applied Magnetic Resonance, 2013, 44, 1139-1165.	1.2	7
28	Phonon Spectrum in Hydroxyapatite: Calculations and EPR Study at Low Temperatures. Journal of Low Temperature Physics, 2016, 185, 627-632.	1.4	7
29	High-frequency EPR, ESE, and ENDOR spectroscopy of Co- and Mn-doped ZnO quantum dots. Physica Status Solidi (B): Basic Research, 2013, 250, n/a-n/a.	1.5	5
30	Combined W-Band Light-Induced ESR/ENDOR/TRIPLE and DFT Study of PPVtype/PC61BM Ion Radicals. Journal of Physical Chemistry C, 2016, 120, 28905-28911.	3.1	5
31	Influence of the Chemical Modification of the Nanodiamond Surface on Electron Paramagnetic Resonance/Electron-Nuclear Double Resonance Spectra of Intrinsic Nitrogen Defects. Journal of Physical Chemistry C, 2019, 123, 22384-22389.	3.1	4
32	EPR and double resonances in study of diamonds and nanodiamonds. Experimental Methods in the Physical Sciences, 2019, 50, 83-113.	0.1	4
33	Dynamical nuclear polarization and confinement effects in ZnO quantum dots. Physica Status Solidi (B): Basic Research, 2010, 247, 1476-1479.	1.5	3
34	Connection Between the Carotid Plaque Instability and Paramagnetic Properties of the Intrinsic Mn2+ lons. BioNanoScience, 2016, 6, 558-560.	3.5	3
35	Dynamical nuclear polarization by means of shallow donors in ZnO quantum dots. Physica B: Condensed Matter, 2009, 404, 4779-4782.	2.7	1
36	Defects in AlN: High-frequency EPR and ENDOR studies. Physica B: Condensed Matter, 2009, 404, 4873-4876.	2.7	0

#	Article	IF	CITATIONS
37	Reply to ‰Comment on "Angstrom-scale probing of paramagnetic centers location in nanodiamonds by ³ He NMR at low temperaturesâ€â€™ by A. Shames, V. Osipov and A. Panich, <i>Phys. Chem. Chem. Phys. </i> /i> 2018, 20 , DOI: 10.1039/c8cp03331e. Physical Chemistry Chemical Physics, 2018, 20, 27697-27699.	2.8	0
38	Electron Paramagnetic Resonance Based Spectroscopic Techniques. , 2014, , 257-272.		0