
Steven Dean Prager

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2313260/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Healthy and sustainable diets from today to 2050—The role of international trade. PLoS ONE, 2022, 17, e0264729.	2.5	2
2	Labour productivity: The forgotten yield gap. Agricultural Systems, 2022, 201, 103452.	6.1	7
3	Synthesizing Vulnerability, Risk, Resilience, and Sustainability into VRRSability for Improving Geoinformation Decision Support Evaluations. ISPRS International Journal of Geo-Information, 2021, 10, 179.	2.9	2
4	Strategic foresight for agriculture: Past ghosts, present challenges, and future opportunities. Global Food Security, 2021, 28, 100489.	8.1	12
5	A global meta-analysis of climate services and decision-making in agriculture. Climate Services, 2021, 22, 100231.	2.5	20
6	In pursuit of a better world: crop improvement and the CGIAR. Journal of Experimental Botany, 2021, 72, 5158-5179.	4.8	35
7	How does El Niño Southern Oscillation affect rice-producing environments in central Colombia?. Agricultural and Forest Meteorology, 2021, 306, 108443.	4.8	7
8	Improving Seasonal Precipitation Forecasts for Agriculture in the OrinoquÃa Region of Colombia. Weather and Forecasting, 2020, 35, 437-449.	1.4	12
9	Determinants of vulnerability of bean growing households to climate variability in Colombia. Climate and Development, 2020, 12, 730-742.	3.9	7
10	A scoping review on incentives for adoption of sustainable agricultural practices and their outcomes. Nature Sustainability, 2020, 3, 809-820.	23.7	225
11	Pronosticos AClimateColombia: A system for the provision of information for climate risk reduction in Colombia. Computers and Electronics in Agriculture, 2020, 174, 105486.	7.7	6
12	CGIAR modeling approaches for resourceâ€constrained scenarios: II. Models for analyzing socioeconomic factors to improve policy recommendations. Crop Science, 2020, 60, 568-581.	1.8	21
13	Importance of genetic parameters and uncertainty of MANIHOT, a new mechanistic cassava simulation model. European Journal of Agronomy, 2020, 115, 126031.	4.1	12
14	Global drivers of food system (un)sustainability: A multi-country correlation analysis. PLoS ONE, 2020, 15, e0231071.	2.5	66
15	Robust Path Matching and Anomalous Route Detection Using Posterior Weighted Graphs. ACM Transactions on Spatial Algorithms and Systems, 2019, 5, 1-19.	1.4	0
16	Understanding food systems drivers: A critical review of the literature. Global Food Security, 2019, 23, 149-159.	8.1	90
17	The usefulness of ecological concepts: patterns among practitioners. Ecosphere, 2019, 10, e02652.	2.2	0
18	Understanding the consequences of changes in the production frontiers for roots, tubers and bananas. Global Food Security, 2019, 20, 180-188.	8.1	37

STEVEN DEAN PRAGER

#	Article	IF	CITATIONS
19	Global map and indicators of food system sustainability. Scientific Data, 2019, 6, 279.	5.3	73
20	When food systems meet sustainability – Current narratives and implications for actions. World Development, 2019, 113, 116-130.	4.9	377
21	Small-scale farmers in a 1.5ŰC future: The importance of local social dynamics as an enabling factor for implementation and scaling of climate-smart agriculture. Current Opinion in Environmental Sustainability, 2018, 31, 112-119.	6.3	23
22	Conceptual toolboxes for twentyâ€firstâ€century ecologists. Ecosphere, 2018, 9, e02104.	2.2	1
23	Biological control of an invasive pest eases pressures on global commodity markets. Environmental Research Letters, 2018, 13, 094005.	5.2	20
24	Predictability of seasonal precipitation across major crop growing areas in Colombia. Climate Services, 2018, 12, 36-47.	2.5	36
25	Assessing the implications of a 1.5°C temperature limit for the Jamaican agriculture sector. Regional Environmental Change, 2018, 18, 2313-2327.	2.9	22
26	Got forages? Understanding potential returns on investment in <i>Brachiaria</i> spp. for dairy producers in Eastern Africa. Tropical Grasslands - Forrajes Tropicales, 2018, 6, 117-133.	0.5	12
27	100 years of ecology: what are our concepts and are they useful?. Ecological Monographs, 2017, 87, 260-277.	5.4	19
28	GIS&T and Agriculture. , 2017, 2017, .		0
29	Assessing Weather-Yield Relationships in Rice at Local Scale Using Data Mining Approaches. PLoS ONE, 2016, 11, e0161620.	2.5	56
30	External Influences on Ecological Theory: Report on Organized Oral Session 80 at the 100th Anniversary Meeting of the Ecological Society of America. Bulletin of the Ecological Society of America, 2016, 97, 311-317.	0.2	0
31	Impactos socioeconómicos del cambio climático en América Latina y el Caribe: 2020-2045. Cuadernos De Desarrollo Rural, 2016, 13, 11.	0.3	6
32	From Observation to Information: Data-Driven Understanding of on Farm Yield Variation. PLoS ONE, 2016, 11, e0150015.	2.5	30
33	Network approaches for understanding rainwater management from a social-ecological systems perspective. Ecology and Society, 2015, 20, .	2.3	9
34	Ecological Concepts: What Are They, What Is Their Value, And For Whom?. Bulletin of the Ecological Society of America, 2015, 96, 64-69.	0.2	5
35	Utilization of spatial decision support systems decision-making in dryland agriculture: A Tifton burclover case study. Computers and Electronics in Agriculture, 2015, 118, 215-224.	7.7	14
36	Modeling Use of Space from Social Media Data Using a Biased Random Walker. Transactions in GIS, 2014, 18, 817-833.	2.3	4

STEVEN DEAN PRAGER

#	Article	IF	CITATIONS
37	Foundations of sustainability information representation theory: spatial–temporal dynamics of sustainable systems. International Journal of Geographical Information Science, 2014, 28, 1165-1185.	4.8	20
38	Response to comments on the dynamics of network dynamics. Behavioral Ecology, 2014, 25, 260-261.	2.2	0
39	The dynamics of animal social networks: analytical, conceptual, and theoretical advances. Behavioral Ecology, 2014, 25, 242-255.	2.2	340
40	Evolutionary search for understanding movement dynamics on mixed networks. GeoInformatica, 2013, 17, 353-385.	2.7	4
41	Modeling unobserved true position using multiple sources and information semantics. International Journal of Geographical Information Science, 2012, 26, 15-37.	4.8	3
42	A GIS-based method for the analysis of digital rhizotron images. Plant Root, 2011, 5, 69-78.	0.3	4
43	Disaggregating human population for improved land use management in Kenya. Journal of Land Use Science, 2010, 5, 237-257.	2.2	2
44	Assessment and Evaluation of GIScience Curriculum using the Geographic Information Science and Technology Body of Knowledge. Journal of Geography in Higher Education, 2009, 33, S46-S69.	2.6	30
45	Using the extended quarter degree grid cell system to unify mapping and sharing of biodiversity data. African Journal of Ecology, 2009, 47, 382-392.	0.9	14
46	Estimating sagebrush cover in semi-arid environments using Landsat Thematic Mapper data. International Journal of Applied Earth Observation and Geoinformation, 2009, 11, 103-107.	2.8	13
47	Historical and emerging practices in ecological topology. Ecological Complexity, 2009, 6, 160-171.	2.9	17
48	A hybrid evolutionary-graph approach for finding functional network paths. , 2009, , .		2
49	Combining multiple maps of line features to infer true position. Bayesian Analysis, 2008, 3, .	3.0	3
50	Environmental contextualization of uncertainty for moving objects. Computers, Environment and Urban Systems, 2007, 31, 303-316.	7.1	8
51	Sketch-based Identification of Bench and Terrace Slope Breaks in the Laramie Basin, Wyoming. Transactions in GIS, 2007, 11, 703-719.	2.3	0
52	Conditional sustainability. International Journal of Sustainable Development, 2006, 9, 227.	0.2	0
53	<title>Analysis of technical alternative technologies for the development of context-driven composable environmental representations for JSB</title> . , 2004, , .		Ο