
David I Vaney

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2313131/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The foundations of visual neuroscience in Australia. Journal of Comparative Neurology, 2020, 528, 2792-2799.	1.6	0
2	Distinct Roles for Inhibition in Spatial and Temporal Tuning of Local Edge Detectors in the Rabbit Retina. PLoS ONE, 2014, 9, e88560.	2.5	20
3	Direction selectivity in the retina: symmetry and asymmetry in structure and function. Nature Reviews Neuroscience, 2012, 13, 194-208.	10.2	272
4	A novel type of complex ganglion cell in rabbit retina. Journal of Comparative Neurology, 2011, 519, 3128-3138.	1.6	21
5	Regional distribution of nitrergic neurons in the inner retina of the chicken. Visual Neuroscience, 2011, 28, 205-220.	1.0	16
6	Synaptic inputs and timing underlying the velocity tuning of direction-selective ganglion cells in rabbit retina. Journal of Physiology, 2010, 588, 3243-3253.	2.9	41
7	Dendritic morphology and tracer-coupling pattern of physiologically identified transient uniformity detector ganglion cells in rabbit retina. Visual Neuroscience, 2010, 27, 159-170.	1.0	20
8	Uniformity detector retinal ganglion cells fire complex spikes and receive only light-evoked inhibition. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 5628-5633.	7.1	38
9	Semi-loose seal Neurobiotin electroporation for combined structural and functional analysis of neurons. Pflugers Archiv European Journal of Physiology, 2008, 457, 561-568.	2.8	35
10	Local Edge Detectors: A Substrate for Fine Spatial Vision at Low Temporal Frequencies in Rabbit Retina. Journal of Neuroscience, 2006, 26, 13250-13263.	3.6	97
11	Gap-junction communication between subtypes of direction-selective ganglion cells in the developing retina. Journal of Comparative Neurology, 2005, 482, 85-93.	1.6	18
12	The type 1 polyaxonal amacrine cells of the rabbit retina: A tracer-coupling study. Visual Neuroscience, 2004, 21, 145-155.	1.0	31
13	Type 1 nitrergic (ND1) cells of the rabbit retina: Comparison with other axon-bearing amacrine cells. Journal of Comparative Neurology, 2004, 474, 149-171.	1.6	20
14	New directions in retinal research. Trends in Neurosciences, 2003, 26, 379-385.	8.6	97
15	Chapter 18 Retinal neurons: cell types and coupled networks. Progress in Brain Research, 2002, 136, 239-254.	1.4	43
16	Diverse Synaptic Mechanisms Generate Direction Selectivity in the Rabbit Retina. Journal of Neuroscience, 2002, 22, 7712-7720.	3.6	181
17	Direction selectivity in the retina. Current Opinion in Neurobiology, 2002, 12, 405-410.	4.2	67
18	The fountain amacrine cells of the rabbit retina. Visual Neuroscience, 2000, 17, 156-156.	1.0	7

DAVID I VANEY

#	Article	IF	CITATIONS
19	Endogenous dopaminergic regulation of horizontal cell coupling in the mammalian retina. , 2000, 418, 33-40.		97
20	The dendritic architecture of the cholinergic plexus in the rabbit retina: Selective labeling by glycine accumulation in the presence of sarcosine. Journal of Comparative Neurology, 2000, 421, 1-13.	1.6	52
21	Gap junctions in the eye: evidence for heteromeric, heterotypic and mixed-homotypic interactions. Brain Research Reviews, 2000, 32, 115-120.	9.0	50
22	Modulation of coupling between retinal horizontal cells by retinoic acid and endogenous dopamine. Brain Research Reviews, 2000, 32, 121-129.	9.0	78
23	Dendritic Computation of Direction Selectivity by Retinal Ganglion Cells. Science, 2000, 289, 2347-2350.	12.6	151
24	The dendritic architecture of the cholinergic plexus in the rabbit retina: Selective labeling by glycine accumulation in the presence of sarcosine. Journal of Comparative Neurology, 2000, 421, 1-13.	1.6	1
25	Retinoic Acid Modulates Gap Junctional Permeability Between Horizontal Cells Of The Mammalian Retina. European Journal of Neuroscience, 1999, 11, 3346-3350.	2.6	54
26	The fountain amacrine cells of the rabbit retina. Visual Neuroscience, 1999, 16, 1145-1156.	1.0	11
27	Neuronal Coupling in the Central Nervous System: Lessons from the Retina. Novartis Foundation Symposium, 1999, 219, 113-133.	1.1	17
28	The modulation of intercellular coupling in the retina. Seminars in Cell and Developmental Biology, 1998, 9, 311-318.	5.0	76
29	Neurotransmitter Coupling through Gap Junctions in the Retina. Journal of Neuroscience, 1998, 18, 10594-10602.	3.6	148
30	The DAPI-3 amacrine cells of the rabbit retina. Visual Neuroscience, 1997, 14, 473-492.	1.0	53
31	The immunocytochemical detection of amino-acid neurotransmitters in paraformaldehyde-fixed tissues. Journal of Neuroscience Methods, 1995, 56, 115-123.	2.5	103
32	Patterns of neuronal coupling in the retina. Progress in Retinal and Eye Research, 1994, 13, 301-355.	15.5	177
33	The spatial organization of tyrosine hydroxylase-immunoreactive amacrine cells in the chicken retina and the consequences of myopia. Vision Research, 1993, 33, 2383-2396.	1.4	48
34	Photochromic intensification of diaminobenzidine reaction product in the presence of tetrazolium salts: applications for intracellular labelling and immunohistochemistry. Journal of Neuroscience Methods, 1992, 44, 217-223.	2.5	65
35	Many diverse types of retinal neurons show tracer coupling when injected with biocytin or Neurobiotin. Neuroscience Letters, 1991, 125, 187-190.	2.1	395
36	Rodâ€signal interneurons in the rabbit retina: 1. Rod bipolar cells. Journal of Comparative Neurology, 1991, 310, 139-153.	1.6	103

DAVID I VANEY

#	Article	IF	CITATIONS
37	Rod-signal interneurons in the rabbit retina: 2. All amacrine cells. Journal of Comparative Neurology, 1991, 310, 154-169.	1.6	84
38	The rod circuit in the rabbit retina. Visual Neuroscience, 1991, 7, 141-154.	1.0	77
39	The retinae of Prototherian mammals possess neuronal types that are characteristic of non-mammalian retinae. Visual Neuroscience, 1990, 5, 61-66.	1.0	36
40	Chapter 2 The mosaic of amacrine cells in the mammalian retina. Progress in Retinal and Eye Research, 1990, 9, 49-100.	0.8	330
41	Dendritic Relationships between Cholinergic Amacrine Cells and Direction-Selective Retinal Ganglion Cells. , 1989, , 157-168.		48
42	GABA-like immunoreactivity in NADPH-diaphorase amacrine cells of the rabbit retina. Brain Research, 1988, 474, 380-385.	2.2	113
43	CABA-like immunoreactivity in cholinergic amacrine cells of the rabbit retina. Brain Research, 1988, 438, 369-373.	2.2	222
44	Vision: Fireworks in the retina. Nature, 1985, 314, 672-673.	27.8	8
45	The organization of binocular cortex in the primary visual area of the rabbit. Journal of Comparative Neurology, 1982, 204, 151-164.	1.6	80
46	Matching populations of amacrine cells in the inner nuclear and ganglion cell layers of the rabbit retina. Journal of Comparative Neurology, 1981, 199, 373-391.	1.6	178
47	Coronate cells: Displaced amacrines of the rabbit retina?. Journal of Comparative Neurology, 1980, 189, 169-189.	1.6	95
48	A quantitative comparison between the ganglion cell populations and axonal outflows of the visual streak and periphery of the rabbit retina. Journal of Comparative Neurology, 1980, 189, 215-233.	1.6	133