List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2312996/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	High bee functional diversity buffers crop pollination services against Amazon deforestation. Agriculture, Ecosystems and Environment, 2022, 326, 107777.	2.5	11
2	The widespread trade in stingless beehives may introduce them into novel places and could threaten species. Journal of Applied Ecology, 2022, 59, 965-981.	1.9	10
3	Telling the Wood from the Trees: Ranking a Tree Species List to Aid Urban Afforestation in the Amazon. Sustainability, 2022, 14, 1321.	1.6	2
4	Effects of Climate Change on Hydrology in the Most Relevant Mining Basin in the Eastern Legal Amazon. Water (Switzerland), 2022, 14, 1416.	1.2	6
5	Status and trends of pollination services in Amazon agroforestry systems. Agriculture, Ecosystems and Environment, 2022, 335, 108012.	2.5	8
6	Multicriteria approach to prioritize forest restoration areas for biodiversity conservation in the eastern Amazon. Journal of Environmental Management, 2022, 318, 115590.	3.8	4
7	Edible Fruit Plant Species in the Amazon Forest Rely Mostly on Bees and Beetles as Pollinators. Journal of Economic Entomology, 2021, 114, 710-722.	0.8	14
8	Foraging preferences of the native stingless bee Melipona seminigra pernigra (Apidae: Meliponini) in campo rupestre on canga of Serra dos Carajás, southeastern Amazonia. Biota Neotropica, 2021, 21, .	0.2	4
9	Combining connectivity and species distribution modeling to define conservation and restoration priorities for multiple species: A case study in the eastern Amazon. Biological Conservation, 2021, 257, 109148.	1.9	15
10	Specialist Bee Species Are Larger and Less Phylogenetically Distinct Than Generalists in Tropical Plant–Bee Interaction Networks. Frontiers in Ecology and Evolution, 2021, 9, .	1.1	5
11	Neglected diversity of crop pollinators: Lessons from the world's largest tropical country. Perspectives in Ecology and Conservation, 2021, 19, 500-504.	1.0	3
12	Flora of Ferruginous Outcrops Under Climate Change: A Study in the Cangas of Carajás (Eastern) Tj ETQq0 0 0 r	gBT_/Overl	lock 10 Tf 50
13	Size and isolation of naturally isolated habitats do not affect plant-bee interactions: A case study of ferruginous outcrops within the eastern Amazon forest. PLoS ONE, 2020, 15, e0238685.	1.1	5
14	Forest Matrix Fosters High Similarity in Bee Composition Occurring on Isolated Outcrops Within Amazon Biome. Environmental Entomology, 2020, 49, 1374-1382.	0.7	1
15	Climateâ€induced distribution dynamics of <i>Plebeia flavocincta</i> , a stingless bee from Brazilian tropical dry forests. Ecology and Evolution, 2020, 10, 10130-10138.	0.8	4
16	Perception of Nature's Contributions to People in Rural Communities in the Eastern Amazon. Sustainability, 2020, 12, 7665.	1.6	5
17	The Value of Crop Production and Pollination Services in the Eastern Amazon. Neotropical Entomology, 2020, 49, 545-556.	0.5	15

¹⁸ Climate change in the Eastern Amazon: crop-pollinator and occurrence-restricted bees are potentially 1.4 54 more affected. Regional Environmental Change, 2020, 20, 1.

#	Article	IF	CITATIONS
19	Unveiling the contribution of bee pollinators to Brazilian crops with implications for bee management. Apidologie, 2020, 51, 406-421.	0.9	39
20	A dataset of multi-functional ecological traits of Brazilian bees. Scientific Data, 2020, 7, 120.	2.4	25
21	Bats in Three Protected Areas of The Central Amazon Ecological Corridor in Brazil. Acta Chiropterologica, 2020, 21, 425.	0.2	5
22	Edaphic Endemism in the Amazon: Vascular Plants of the canga of Carajás, Brazil. Botanical Review, The, 2019, 85, 357-383.	1.7	34
23	Valuing nature's contribution to people: The pollination services provided by two protected areas in Brazil. Global Ecology and Conservation, 2019, 20, e00782.	1.0	12
24	Mapping and quantification of ferruginous outcrop savannas in the Brazilian Amazon: A challenge for biodiversity conservation. PLoS ONE, 2019, 14, e0211095.	1.1	36
25	Climate change impact on ecosystem functions provided by birds in southeastern Amazonia. PLoS ONE, 2019, 14, e0215229.	1.1	28
26	Landscape genomics to the rescue of a tropical bee threatened by habitat loss and climate change. Evolutionary Applications, 2019, 12, 1164-1177.	1.5	41
27	Pollinator restoration in Brazilian ecosystems relies on a small but phylogenetically-diverse set of plant families. Scientific Reports, 2019, 9, 17383.	1.6	20
28	Anthropogenic disturbance of tropical forests threatens pollination services to açaÃ-palm in the Amazon river delta. Journal of Applied Ecology, 2018, 55, 1725-1736.	1.9	54
29	Bat diversity in Carajás National Forest (Eastern Amazon) and potential impacts on ecosystem services under climate change. Biological Conservation, 2018, 218, 200-210.	1.9	29
30	Topsoil application during the rehabilitation of a manganese tailing dam increases plant taxonomic, phylogenetic and functional diversity. Journal of Environmental Management, 2018, 227, 386-394.	3.8	18
31	Landscape Genomic Conservation Assessment of a Narrow-Endemic and a Widespread Morning Glory From Amazonian Savannas. Frontiers in Plant Science, 2018, 9, 532.	1.7	48
32	Blind Testing: DNA Barcoding Sheds Light Upon the Identity of Plant Fragments as a Subsidy for Cave Conservation. Frontiers in Plant Science, 2018, 9, 1052.	1.7	7
33	Pollen morphology of the Poaceae: implications of the palynological and paleoecological records of the southeastern Amazon in Brazil. Palynology, 2018, 42, 311-323.	0.7	13
34	Protecting a managed bee pollinator against climate change: strategies for an area with extreme climatic conditions and socioeconomic vulnerability. Apidologie, 2017, 48, 784-794.	0.9	32
35	Environmental and vegetation changes in southeastern Amazonia during the late Pleistocene and Holocene. Quaternary International, 2017, 449, 83-105.	0.7	24
36	Modern pollen rain as a background for palaeoenvironmental studies in the Serra dos Carajás, southeastern Amazonia. Holocene, 2017, 27, 1055-1066.	0.9	20

#	Article	IF	CITATIONS
37	Sustainability of Jaborandi in the eastern Brazilian Amazon. Perspectives in Ecology and Conservation, 2017, 15, 161-171.	1.0	8
38	Selecting plant species for practical restoration of degraded lands using a multiple-trait approach. Austral Ecology, 2017, 42, 510-521.	0.7	56
39	Projected climate change threatens pollinators and crop production in Brazil. PLoS ONE, 2017, 12, e0182274.	1.1	69
40	Worldwide Alien Invasion: A Methodological Approach to Forecast the Potential Spread of a Highly Invasive Pollinator. PLoS ONE, 2016, 11, e0148295.	1.1	37
41	Reconciling Mining with the Conservation of Cave Biodiversity: A Quantitative Baseline to Help Establish Conservation Priorities. PLoS ONE, 2016, 11, e0168348.	1.1	37
42	Eriocaulaceae in the Brazilian Amazon and the use of Species Distribution Modelling in its conservation. Rodriguesia, 2016, 67, 905-916.	0.9	3
43	Beekeeping practices and geographic distance, not land use, drive gene flow across tropical bees. Molecular Ecology, 2016, 25, 5345-5358.	2.0	66
44	Safeguarding Ecosystem Services: A Methodological Framework to Buffer the Joint Effect of Habitat Configuration and Climate Change. PLoS ONE, 2015, 10, e0129225.	1.1	34
45	Native and Non-Native Supergeneralist Bee Species Have Different Effects on Plant-Bee Networks. PLoS ONE, 2015, 10, e0137198.	1.1	76
46	The Dependence of Crops for Pollinators and the Economic Value of Pollination in Brazil. Journal of Economic Entomology, 2015, 108, 849-857.	0.8	164
47	Crop pollinators in Brazil: a review of reported interactions. Apidologie, 2015, 46, 209-223.	0.9	133
48	Improving species distribution models using biotic interactions: a case study of parasites, pollinators and plants. Ecography, 2013, 36, 649-656.	2.1	129
49	Interactions at large spatial scale: The case of Centris bees and floral oil producing plants in South America. Ecological Modelling, 2013, 258, 74-81.	1.2	16
50	Identifying the areas to preserve passion fruit pollination service in Brazilian Tropical Savannas under climate change. Agriculture, Ecosystems and Environment, 2013, 171, 39-46.	2.5	45
51	Generalist Bee Species on Brazilian Bee-Plant Interaction Networks. Psyche: Journal of Entomology, 2012, 2012, 1-7.	0.4	17
52	Desafios atuais da modelagem preditiva de distribuição de espécies. Rodriguesia, 2012, 63, 733-749.	0.9	54
53	Pollination services at risk: Bee habitats will decrease owing to climate change in Brazil. Ecological Modelling, 2012, 244, 127-131.	1.2	125
54	Ecological niche modeling and principal component analysis of Krameria Loefl. (Krameriaceae). Journal of Arid Environments, 2011, 75, 870-872.	1.2	9

#	Article	IF	CITATIONS
55	Ecological niche similarities of Peponapis bees and non-domesticated Cucurbita species. Ecological Modelling, 2011, 222, 2011-2018.	1.2	18
56	Ecological niche modeling and geographical distribution of pollinator and plants: A case study of Peponapis fervens (Smith, 1879) (Eucerini: Apidae) and Cucurbita species (Cucurbitaceae). Ecological Informatics, 2010, 5, 59-66.	2.3	29
57	Evaluation of different aspects of maximum entropy for niche-based modeling. Procedia Environmental Sciences, 2010, 2, 990-1001.	1.3	3
58	Within-colony size variation of foragers and pollen load capacity in the stingless bee Melipona quadrifasciata anthidioides Lepeletier (Apidae, Hymenoptera). Apidologie, 1998, 29, 221-228.	0.9	65
59	Pollen Harvest by Stingless Bee Foragers (Hymenoptera, Apidae, Meliponinae). Grana, 1994, 33, 239-244.	0.4	64
60	Characterization of some southern Brazilian honey and bee plants through pollen analysis. Journal of Apicultural Research, 1991, 30, 81-86.	0.7	28
61	Biodiversity 4.0: Standardizing biodiversity protocols for the private sector. Biodiversity Information Science and Standards, 0, 5, .	0.0	0
62	The Need of Species Distribution Models Metadata: Using Species Distribution Model to Address Decision Making on Climate Change. Biodiversity Information Science and Standards, 0, 2, e25478.	0.0	1
63	New Requirements of Biodiversity Research for Metadata on Models and Sensors on the Internet of Things and Big Data Era. Biodiversity Information Science and Standards, 0, 2, e25653.	0.0	0
64	Role of species: traits, interactions and ecosystem services. Biodiversity Information Science and Standards, 0, 2, e25345.	0.0	0
65	Natural History Collection Data: Traits to Identify Plant-Pollinator Interactions in a Spatial Context. Biodiversity Information Science and Standards, 0, 2, e25857.	0.0	0
66	Biodiversity Climate Shifts: shaping data transformation and evaluation. Biodiversity Information Science and Standards, 0, 4, .	0.0	0