Junmin Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2312939/publications.pdf Version: 2024-02-01

LUNMIN WANC

#	ARTICLE	IF	CITATIONS
1	Melatonin receptor activation provides cerebral protection after traumatic brain injury by mitigating oxidative stress and inflammation via the Nrf2 signaling pathway. Free Radical Biology and Medicine, 2019, 131, 345-355.	2.9	126
2	Structural analysis and immunoregulation activity comparison of five polysaccharides from Angelica sinensis. Carbohydrate Polymers, 2016, 140, 6-12.	10.2	68
3	Behavioral Assessment of Sensory, Motor, Emotion, and Cognition in Rodent Models of Intracerebral Hemorrhage. Frontiers in Neurology, 2021, 12, 667511.	2.4	51
4	Traumatic Brain Injury: Ultrastructural Features in Neuronal Ferroptosis, Glial Cell Activation and Polarization, and Blood–Brain Barrier Breakdown. Cells, 2021, 10, 1009.	4.1	28
5	Hemorrhagic Transformation After Tissue Plasminogen Activator Treatment in Acute Ischemic Stroke. Cellular and Molecular Neurobiology, 2022, 42, 621-646.	3.3	22
6	BMP2-mediated PTEN enhancement promotes differentiation of hair follicle stem cells by inducing autophagy. Experimental Cell Research, 2019, 385, 111647.	2.6	21
7	Profiling of Blood-Brain Barrier Disruption in Mouse Intracerebral Hemorrhage Models: Collagenase Injection vs. Autologous Arterial Whole Blood Infusion. Frontiers in Cellular Neuroscience, 2021, 15, 699736.	3.7	20
8	COVID-19-Related Brain Injury: The Potential Role of Ferroptosis. Journal of Inflammation Research, 2022, Volume 15, 2181-2198.	3.5	15
9	Mechanisms and potential therapeutic targets for spontaneous intracerebral hemorrhage. Brain Hemorrhages, 2020, 1, 99-104.	1.0	14
10	EZH2-mediated inhibition of microRNA-22 promotes differentiation of hair follicle stem cells by elevating STK40 expression. Aging, 2020, 12, 12726-12739.	3.1	13
11	Potential Efficacy of Erythropoietin on Reducing the Risk of Mortality in Patients with Traumatic Brain Injury: A Systematic Review and Meta-Analysis. BioMed Research International, 2020, 2020, 1-9.	1.9	7
12	The effect of a human acellular amniotic membrane loaded with mechanical stretch-stimulated bone marrow mesenchymal stem cells for the treatment of pelvic floor dysfunction. RSC Advances, 2017, 7, 37086-37094.	3.6	5
13	Transplantation of bone marrow-derived mesenchymal stem cells with silencing of microRNA-138 relieves pelvic organ prolapse through the FBLN5/IL-1β/elastin pathway. Aging, 2021, 13, 3045-3059.	3.1	5
14	miR-590-5p Overexpression Alleviates β-Amyloid-Induced Neuron Damage via Targeting Pellino-1. Analytical Cellular Pathology, 2022, 2022, 1-13.	1.4	5
15	A crucial role of fibroblast growth factor 2 in the differentiation of hair follicle stem cells toward endothelial cells in a STAT5-dependent manner. Differentiation, 2020, 111, 70-78.	1.9	4
16	MicroRNA-149-Mediated MAPK1/ERK2 Suppression Attenuates Hair Follicle Stem Cell Differentiation. Human Gene Therapy, 2022, 33, 625-637.	2.7	3