Julia GonzÃ;lez-Ãlvarez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2312904/publications.pdf

Version: 2024-02-01

64 papers

2,813 citations

30 h-index 52 g-index

65 all docs

65 docs citations

65 times ranked 3252 citing authors

#	Article	IF	CITATIONS
1	High-value compounds obtained from grape canes (Vitis vinifera L.) by steam pressure alkali extraction. Food and Bioproducts Processing, 2022, 133, 153-167.	1.8	12
2	N- and S-Doped Carbons Derived from Polyacrylonitrile for Gases Separation. Sustainability, 2022, 14, 3760.	1.6	6
3	Valorization of residual walnut biomass from forest management and wood processing for the production of bioactive compounds. Biomass Conversion and Biorefinery, 2021, 11, 609-618.	2.9	15
4	Optimization of the Extraction of Bioactive Compounds from Walnut (Juglans major 209 x Juglans) Tj ETQq0 0 C	rgBT/Ove	erlock 10 Tf 50
5	Potential impact on the recruitment of chemical engineering graduates due to the industrial internship. Education for Chemical Engineers, 2019, 26, 107-113.	2.8	12
6	Modeling and optimizing the solid–liquid extraction of phenolic compounds from lignocellulosic subproducts. Biomass Conversion and Biorefinery, 2019, 9, 737-747.	2.9	14
7	Adsorption of an anionic dye (Congo red) from aqueous solutions by pine bark. Scientific Reports, 2019, 9, 16530.	1.6	178
8	Environmentally friendly wood adhesives based on chestnut (Castanea sativa) shell tannins. European Journal of Wood and Wood Products, 2017, 75, 89-100.	1.3	46
9	Increasing the Greenness of Lignocellulosic Biomass Biorefining Processes by Means of Biocompatible Separation Strategies. ACS Sustainable Chemistry and Engineering, 2017, 5, 3339-3345.	3.2	11
10	Physicochemical composition and antioxidant activity of several pomegranate (Punica granatum L.) cultivars grown in Spain. European Food Research and Technology, 2017, 243, 1799-1814.	1.6	39
11	Outstanding electrochemical performance of highly N- and O-doped carbons derived from pine tannin. Green Chemistry, 2017, 19, 2653-2665.	4.6	63
12	Recovery of Phenolic Compounds from Eucalyptus globulus Wood Wastes using PEG/phosphate Aqueous Two-Phase Systems. Waste and Biomass Valorization, 2017, 8, 443-452.	1.8	11
13	Recovery of phenolic compounds from Eucalyptus wood wastes using ethanol-salt-based aqueous two-phase systems. Maderas: Ciencia Y Tecnologia, 2017, , 0-0.	0.7	7
14	Application of aqueous two phase systems based on polyethylene glycol and sodium citrate for the recovery of phenolic compounds from Eucalyptus wood. Maderas: Ciencia Y Tecnologia, 2015, , 0-0.	0.7	6
15	Antioxidant activity of phenolic extracts from chestnut fruit and forest industries residues. European Journal of Wood and Wood Products, 2015, 73, 651-659.	1.3	24
16	UV protection effects of phenolic extracts from chestnut fruit and forest industries residues. European Journal of Wood and Wood Products, 2015, 73, 731-739.	1.3	6
17	Effect of the extraction technique on the recovery of bioactive compounds from eucalyptus (Eucalyptus globulus) wood industrial wastes. Industrial Crops and Products, 2015, 64, 105-113.	2.5	35
18	Aqueous twoâ€phase systems for the extraction of phenolic compounds from eucalyptus (<i>Eucalyptus) Tj ETC</i>	2q0 0 0 rg	BT /Overlock 1 24

1772-1778.

#	Article	IF	Citations
19	Effect of the Extraction Technique and Operational Conditions on the Recovery of Bioactive Compounds from Chestnut (<i>Castanea sativa</i>) Bur and Shell. Separation Science and Technology, 2014, 49, 267-277.	1.3	50
20	Influence of solvent on the antioxidant and antimicrobial properties of walnut (Juglans regia L.) green husk extracts. Industrial Crops and Products, 2013, 42, 126-132.	2.5	237
21	MALDI-TOF, HPLC-ESI-TOF and 13C-NMR characterization of chestnut (Castanea sativa) shell tannins for wood adhesives. Wood Science and Technology, 2013, 47, 523-535.	1.4	35
22	DSC and DMA study of chestnut shell tannins for their application as wood adhesives without formaldehyde emission. Journal of Thermal Analysis and Calorimetry, 2012, 108, 605-611.	2.0	27
23	Alkaline pre-treatment of waste chestnut shell from a food industry to enhance cadmium, copper, lead and zinc ions removal. Chemical Engineering Journal, 2012, 184, 147-155.	6.6	71
24	Response surface optimization of antioxidants extraction from chestnut (Castanea sativa) bur. Industrial Crops and Products, 2012, 35, 126-134.	2.5	64
25	Comparison of the composition of Pinus radiata bark extracts obtained at bench- and pilot-scales. Industrial Crops and Products, 2012, 38, 21-26.	2.5	46
26	Extraction of antioxidants from forestry biomass: Kinetics and optimization of extraction conditions. Biomass and Bioenergy, 2012, 43, 42-51.	2.9	24
27	Extraction of antioxidants from eucalyptus (Eucalyptus globulus) bark. Wood Science and Technology, 2012, 46, 443-457.	1.4	58
28	Study of the antioxidant potential of forestry biomass waste. WIT Transactions on Ecology and the Environment, 2012, , .	0.0	0
29	Estudio del mojado y caracterizaci $ ilde{A}^3$ n superficial por microscop $ ilde{A}$ a de barrido laser confocal de chapas de madera obtenidas por desenrollo. Maderas: Ciencia Y Tecnologia, 2011, 13, 183-192.	0.7	5
30	Surface characterization of eucalyptus and ash wood veneers by XPS, TOF-SIMS, optic profilometry and contact angle measurements. , 2011, , .		4
31	Optimisation of Polyphenols Extraction from Chestnut Shell by Response Surface Methodology. Waste and Biomass Valorization, 2010, 1, 219-225.	1.8	20
32	Chestnut bur extracts as antioxidants: optimization of the extraction stage. , 2010, , .		4
33	Influence of pre-treatment methods on the adsorption of cadmium ions by chestnut shell. , 2010, , .		O
34	Evaluation of potential applications for chestnut (Castanea sativa) shell and eucalyptus (Eucalyptus) Tj ETQq0 0	0 rgBT /O	verlock 10 Tf 5
35	Chestnut shell as heavy metal adsorbent: Optimization study of lead, copper and zinc cations removal. Journal of Hazardous Materials, 2009, 172, 1402-1414.	6.5	117
36	Equilibrium and kinetic modelling of the adsorption of Cd2+ ions onto chestnut shell. Desalination, 2009, 249, 855-860.	4.0	34

#	Article	IF	Citations
37	Surface characterization of rotary-peeled eucalyptus veneers by confocal laser scanning microscopy and surface free energy and contact angle determination. WIT Transactions on Engineering Sciences, 2009, , .	0.0	O
38	Antioxidant activity and phenolic content of chestnut (Castanea sativa) shell and eucalyptus (Eucalyptus globulus) bark extracts. Industrial Crops and Products, 2008, 28, 279-285.	2.5	275
39	Adsorption of phenol on formaldehyde-pretreated Pinus pinaster bark: Equilibrium and kinetics. Bioresource Technology, 2007, 98, 1535-1540.	4.8	60
40	Curing of a phenol–formaldehyde–tannin adhesive in the presence of wood. Journal of Thermal Analysis and Calorimetry, 2006, 84, 651-654.	2.0	18
41	Uptake of phenol from aqueous solutions by adsorption in a Pinus pinaster bark packed bed. Journal of Hazardous Materials, 2006, 133, 61-67.	6.5	69
42	Curing of a phenol-formaldehyde-tannin adhesive in the presence of wood. Journal of Thermal Analysis and Calorimetry, 2006, 84, 651.	2.0	O
43	Curing process of phenol-urea-formaldehyde-tannin (PUFT) adhesives. Journal of Thermal Analysis and Calorimetry, 2005, 82, 143-149.	2.0	30
44	13C-NMR analysis of phenol-urea-formaldehyde prepolymers and phenol-urea-formaldehyde-tannin adhesives. Journal of Adhesion Science and Technology, 2004, 18, 1529-1543.	1.4	26
45	Effect of veneer side wettability on bonding quality of Eucalyptus globulus plywoods prepared using a tannin?phenol?formaldehyde adhesive. Bioresource Technology, 2003, 87, 349-353.	4.8	27
46	Rheology of tannin-added phenol formaldehyde adhesives for plywood. European Journal of Wood and Wood Products, 2002, 60, 88-91.	1.3	21
47	Preliminary studies on TCF bleaching of Pinus pinaster acetosolv pulps. Bioresource Technology, 2002, 81, 141-149.	4.8	4
48	Removal of cadmium and mercury ions from aqueous solution by sorption on treated Pinus pinaster bark: kinetics and isotherms. Bioresource Technology, 2002, 82, 247-251.	4.8	156
49	Curing Kinetics Of Tannin-Phenol-Formal- dehyde Adhesives As Determined By DSC. Magyar Apróvad Közlemények, 2002, 70, 19-28.	1.4	31
50	Characteristics of Pinus pinaster bark extracts obtained under various extraction conditions. European Journal of Wood and Wood Products, 2001, 59, 451-456.	1.3	55
51	The influence of acetosolv pulping conditions on the enzymatic hydrolysis of Eucalyptus pulps. Wood Science and Technology, 2000, 34, 345-354.	1.4	15
52	Structures, and Reactivities with Formaldehyde, of Some Acetosolv Pine Lignins. Journal of Wood Chemistry and Technology, 1999, 19, 357-378.	0.9	38
53	Acetosolv pine lignin as copolymer in resins for manufacture of exterior grade plywoods. Bioresource Technology, 1999, 70, 209-214.	4.8	45
54	The Influence of Pulping Conditions on the Structure of Acetosolv Eucalyptus Lignins. Journal of Wood Chemistry and Technology, 1997, 17, 147-162.	0.9	43

#	Article	IF	CITATIONS
55	Acetosolv pulping of pine wood. Kinetic modelling of lignin solubilization and condensation. Bioresource Technology, 1997, 59, 121-127.	4.8	46
56	Effect of chemical modification of lignin on the gluebond performance of lignin-phenolic resins. Bioresource Technology, 1997, 60, 191-198.	4.8	111
57	Studies on the composition of Pinus pinaster foliage. Bioresource Technology, 1995, 51, 83-87.	4.8	9
58	Kinetics of polysaccharide hydrolysis in the acid-catalysed delignification of eucalyptus globulus wood by acetic acid. Wood Science and Technology, 1995, 30, 31-38.	1.4	16
59	Kinetics of acid-catalysed delignification of Eucalyptus globulus wood by acetic acid. Wood Science and Technology, 1995, 29, 267.	1.4	40
60	Lignin-phenol-formaldehyde adhesives for exterior grade plywoods. Bioresource Technology, 1995, 51, 187-192.	4.8	57
61	Acetosolv Pulping ofEucalyptus globulusWood. Part I. The Effect of Operational Variables on Pulp Yield, Pulp Lignin Content and Pulp Potential Glucose Content. Holzforschung, 1995, 49, 69-74.	0.9	46
62	Kinetics and mechanism of acetic acid pulping of detannined Pinus pinaster bark. Wood Science and Technology, 1994, 28, 403.	1.4	9
63	Adsorption of heavy metal ions by chemically modified Pinus pinaster bark. Bioresource Technology, 1994, 48, 251-255.	4.8	116
64	Properties of phenolic-tannin adhesives from pinus pinaster bark extracts as related to bond quality in eucalyptus plywoods. European Journal of Wood and Wood Products, 1992, 50, 253-256.	1.3	18