
Julia GonzÃ;lez-Ãlvarez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2312904/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Antioxidant activity and phenolic content of chestnut (Castanea sativa) shell and eucalyptus (Eucalyptus globulus) bark extracts. Industrial Crops and Products, 2008, 28, 279-285.	2.5	275
2	Influence of solvent on the antioxidant and antimicrobial properties of walnut (Juglans regia L.) green husk extracts. Industrial Crops and Products, 2013, 42, 126-132.	2.5	237
3	Adsorption of an anionic dye (Congo red) from aqueous solutions by pine bark. Scientific Reports, 2019, 9, 16530.	1.6	178
4	Removal of cadmium and mercury ions from aqueous solution by sorption on treated Pinus pinaster bark: kinetics and isotherms. Bioresource Technology, 2002, 82, 247-251.	4.8	156
5	Chestnut shell as heavy metal adsorbent: Optimization study of lead, copper and zinc cations removal. Journal of Hazardous Materials, 2009, 172, 1402-1414.	6.5	117
6	Adsorption of heavy metal ions by chemically modified Pinus pinaster bark. Bioresource Technology, 1994, 48, 251-255.	4.8	116
7	Evaluation of potential applications for chestnut (Castanea sativa) shell and eucalyptus (Eucalyptus) Tj ETQq1 1	0.784314 2.5	rgBT /Overlc
8	Effect of chemical modification of lignin on the gluebond performance of lignin-phenolic resins. Bioresource Technology, 1997, 60, 191-198.	4.8	111
9	Alkaline pre-treatment of waste chestnut shell from a food industry to enhance cadmium, copper, lead and zinc ions removal. Chemical Engineering Journal, 2012, 184, 147-155.	6.6	71
10	Uptake of phenol from aqueous solutions by adsorption in a Pinus pinaster bark packed bed. Journal of Hazardous Materials, 2006, 133, 61-67.	6.5	69
11	Response surface optimization of antioxidants extraction from chestnut (Castanea sativa) bur. Industrial Crops and Products, 2012, 35, 126-134.	2.5	64
12	Outstanding electrochemical performance of highly N- and O-doped carbons derived from pine tannin. Green Chemistry, 2017, 19, 2653-2665.	4.6	63
13	Adsorption of phenol on formaldehyde-pretreated Pinus pinaster bark: Equilibrium and kinetics. Bioresource Technology, 2007, 98, 1535-1540.	4.8	60
14	Extraction of antioxidants from eucalyptus (Eucalyptus globulus) bark. Wood Science and Technology, 2012, 46, 443-457.	1.4	58
15	Lignin-phenol-formaldehyde adhesives for exterior grade plywoods. Bioresource Technology, 1995, 51, 187-192.	4.8	57
16	Characteristics of Pinus pinaster bark extracts obtained under various extraction conditions. European Journal of Wood and Wood Products, 2001, 59, 451-456.	1.3	55
17	Effect of the Extraction Technique and Operational Conditions on the Recovery of Bioactive Compounds from Chestnut (<i>Castanea sativa</i>) Bur and Shell. Separation Science and Technology, 2014, 49, 267-277.	1.3	50
18	Acetosolv Pulping ofEucalyptus globulusWood. Part I. The Effect of Operational Variables on Pulp Yield, Pulp Lignin Content and Pulp Potential Glucose Content. Holzforschung, 1995, 49, 69-74.	0.9	46

JULIA GONZÃILEZ-ÃŁVAREZ

#	Article	IF	CITATIONS
19	Acetosolv pulping of pine wood. Kinetic modelling of lignin solubilization and condensation. Bioresource Technology, 1997, 59, 121-127.	4.8	46
20	Comparison of the composition of Pinus radiata bark extracts obtained at bench- and pilot-scales. Industrial Crops and Products, 2012, 38, 21-26.	2.5	46
21	Environmentally friendly wood adhesives based on chestnut (Castanea sativa) shell tannins. European Journal of Wood and Wood Products, 2017, 75, 89-100.	1.3	46
22	Acetosolv pine lignin as copolymer in resins for manufacture of exterior grade plywoods. Bioresource Technology, 1999, 70, 209-214.	4.8	45
23	The Influence of Pulping Conditions on the Structure of Acetosolv Eucalyptus Lignins. Journal of Wood Chemistry and Technology, 1997, 17, 147-162.	0.9	43
24	Kinetics of acid-catalysed delignification of Eucalyptus globulus wood by acetic acid. Wood Science and Technology, 1995, 29, 267.	1.4	40
25	Physicochemical composition and antioxidant activity of several pomegranate (Punica granatum L.) cultivars grown in Spain. European Food Research and Technology, 2017, 243, 1799-1814.	1.6	39
26	Structures, and Reactivities with Formaldehyde, of Some Acetosolv Pine Lignins. Journal of Wood Chemistry and Technology, 1999, 19, 357-378.	0.9	38
27	MALDI-TOF, HPLC-ESI-TOF and 13C-NMR characterization of chestnut (Castanea sativa) shell tannins for wood adhesives. Wood Science and Technology, 2013, 47, 523-535.	1.4	35
28	Effect of the extraction technique on the recovery of bioactive compounds from eucalyptus (Eucalyptus globulus) wood industrial wastes. Industrial Crops and Products, 2015, 64, 105-113.	2.5	35
29	Equilibrium and kinetic modelling of the adsorption of Cd2+ ions onto chestnut shell. Desalination, 2009, 249, 855-860.	4.0	34
30	Curing Kinetics Of Tannin-Phenol-Formal- dehyde Adhesives As Determined By DSC. Magyar Apróvad Közlemények, 2002, 70, 19-28.	1.4	31
31	Curing process of phenol-urea-formaldehyde-tannin (PUFT) adhesives. Journal of Thermal Analysis and Calorimetry, 2005, 82, 143-149.	2.0	30
32	Effect of veneer side wettability on bonding quality of Eucalyptus globulus plywoods prepared using a tannin?phenol?formaldehyde adhesive. Bioresource Technology, 2003, 87, 349-353.	4.8	27
33	DSC and DMA study of chestnut shell tannins for their application as wood adhesives without formaldehyde emission. Journal of Thermal Analysis and Calorimetry, 2012, 108, 605-611.	2.0	27
34	13C-NMR analysis of phenol-urea-formaldehyde prepolymers and phenol-urea-formaldehyde-tannin adhesives. Journal of Adhesion Science and Technology, 2004, 18, 1529-1543.	1.4	26
35	Extraction of antioxidants from forestry biomass: Kinetics and optimization of extraction conditions. Biomass and Bioenergy, 2012, 43, 42-51.	2.9	24
36	Aqueous twoâ€phase systems for the extraction of phenolic compounds from eucalyptus (<i>Eucalyptus) Tj ETQc</i>	0 0 0 rgB1 1.6	[/Overlock] 24

1772-1778.

JULIA GONZÃ;LEZ-ÃŁVAREZ

#	Article	IF	CITATIONS
37	Antioxidant activity of phenolic extracts from chestnut fruit and forest industries residues. European Journal of Wood and Wood Products, 2015, 73, 651-659.	1.3	24
38	Rheology of tannin-added phenol formaldehyde adhesives for plywood. European Journal of Wood and Wood Products, 2002, 60, 88-91.	1.3	21
39	Optimisation of Polyphenols Extraction from Chestnut Shell by Response Surface Methodology. Waste and Biomass Valorization, 2010, 1, 219-225.	1.8	20
40	Properties of phenolic-tannin adhesives from pinus pinaster bark extracts as related to bond quality in eucalyptus plywoods. European Journal of Wood and Wood Products, 1992, 50, 253-256.	1.3	18
41	Curing of a phenol–formaldehyde–tannin adhesive in the presence of wood. Journal of Thermal Analysis and Calorimetry, 2006, 84, 651-654.	2.0	18
42	Kinetics of polysaccharide hydrolysis in the acid-catalysed delignification of eucalyptus globulus wood by acetic acid. Wood Science and Technology, 1995, 30, 31-38.	1.4	16
43	The influence of acetosolv pulping conditions on the enzymatic hydrolysis of Eucalyptus pulps. Wood Science and Technology, 2000, 34, 345-354.	1.4	15
44	Valorization of residual walnut biomass from forest management and wood processing for the production of bioactive compounds. Biomass Conversion and Biorefinery, 2021, 11, 609-618.	2.9	15
45	Modeling and optimizing the solid–liquid extraction of phenolic compounds from lignocellulosic subproducts. Biomass Conversion and Biorefinery, 2019, 9, 737-747.	2.9	14
46	Potential impact on the recruitment of chemical engineering graduates due to the industrial internship. Education for Chemical Engineers, 2019, 26, 107-113.	2.8	12
47	High-value compounds obtained from grape canes (Vitis vinifera L.) by steam pressure alkali extraction. Food and Bioproducts Processing, 2022, 133, 153-167.	1.8	12
48	Increasing the Greenness of Lignocellulosic Biomass Biorefining Processes by Means of Biocompatible Separation Strategies. ACS Sustainable Chemistry and Engineering, 2017, 5, 3339-3345.	3.2	11
49	Recovery of Phenolic Compounds from Eucalyptus globulus Wood Wastes using PEG/phosphate Aqueous Two-Phase Systems. Waste and Biomass Valorization, 2017, 8, 443-452.	1.8	11
50	Optimization of the Extraction of Bioactive Compounds from Walnut (Juglans major 209 x Juglans) Tj ETQq0 0	0 rgβŢ /Ov 2.2	erlock 10 Tf 5
51	Kinetics and mechanism of acetic acid pulping of detannined Pinus pinaster bark. Wood Science and Technology, 1994, 28, 403.	1.4	9
52	Studies on the composition of Pinus pinaster foliage. Bioresource Technology, 1995, 51, 83-87.	4.8	9
53	Recovery of phenolic compounds from Eucalyptus wood wastes using ethanol-salt-based aqueous two-phase systems. Maderas: Ciencia Y Tecnologia, 2017, , 0-0.	0.7	7

54Application of aqueous two phase systems based on polyethylene glycol and sodium citrate for the
recovery of phenolic compounds from Eucalyptus wood. Maderas: Ciencia Y Tecnologia, 2015, , 0-0.0.76

JULIA GONZÃILEZ-ÃŁVAREZ

#	Article	IF	CITATIONS
55	UV protection effects of phenolic extracts from chestnut fruit and forest industries residues. European Journal of Wood and Wood Products, 2015, 73, 731-739.	1.3	6
56	N- and S-Doped Carbons Derived from Polyacrylonitrile for Gases Separation. Sustainability, 2022, 14, 3760.	1.6	6
57	Estudio del mojado y caracterización superficial por microscopÃa de barrido laser confocal de chapas de madera obtenidas por desenrollo. Maderas: Ciencia Y Tecnologia, 2011, 13, 183-192.	0.7	5
58	Preliminary studies on TCF bleaching of Pinus pinaster acetosolv pulps. Bioresource Technology, 2002, 81, 141-149.	4.8	4
59	Surface characterization of eucalyptus and ash wood veneers by XPS, TOF-SIMS, optic profilometry and contact angle measurements. , 2011, , .		4
60	Chestnut bur extracts as antioxidants: optimization of the extraction stage. , 2010, , .		4
61	Surface characterization of rotary-peeled eucalyptus veneers by confocal laser scanning microscopy and surface free energy and contact angle determination. WIT Transactions on Engineering Sciences, 2009, , .	0.0	0
62	Influence of pre-treatment methods on the adsorption of cadmium ions by chestnut shell. , 2010, , .		0
63	Study of the antioxidant potential of forestry biomass waste. WIT Transactions on Ecology and the Environment, 2012, , .	0.0	0
64	Curing of a phenol-formaldehyde-tannin adhesive in the presence of wood. Journal of Thermal Analysis and Calorimetry, 2006, 84, 651.	2.0	0