Gary Bryant

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/231230/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Impact of Water on the Lateral Nanostructure of a Deep Eutectic Solvent–Solid Interface. Australian Journal of Chemistry, 2022, 75, 111-125.	0.5	7
2	Bulk and interfacial nanostructure and properties in deep eutectic solvents: Current perspectives and future directions. Journal of Colloid and Interface Science, 2022, 608, 2430-2454.	5.0	45
3	Illuminating the biochemical interaction of antimicrobial few-layer black phosphorus with microbial cells using synchrotron macro-ATR-FTIR. Journal of Materials Chemistry B, 2022, 10, 7527-7539.	2.9	8
4	Effects of cryoprotectants on phospholipid monolayers – concentration and species dependence. Australian Journal of Chemistry, 2022, , .	0.5	0
5	Preferred orientation and its effects on intensity-correlation measurements. IUCrJ, 2022, 9, 231-242.	1.0	2
6	Probing the dynamics of turbid colloidal suspensions using differential dynamic microscopy. Soft Matter, 2022, 18, 1858-1867.	1.2	6
7	Deep eutectic solvents as cryoprotective agents for mammalian cells. Journal of Materials Chemistry B, 2022, 10, 4546-4560.	2.9	22
8	Lethal Interactions of Atomically Precise Gold Nanoclusters and <i>Pseudomonas aeruginosa</i> and <i>Staphylococcus aureus</i> Bacterial Cells. ACS Applied Materials & Interfaces, 2022, 14, 32634-32645.	4.0	11
9	The need for novel cryoprotectants and cryopreservation protocols: Insights into the importance of biophysical investigation and cell permeability. Biochimica Et Biophysica Acta - General Subjects, 2021, 1865, 129749.	1.1	59
10	Multimodal Imaging and Soft Xâ€Ray Tomography of Fluorescent Nanodiamonds in Cancer Cells. Biotechnology Journal, 2021, 16, e2000289.	1.8	12
11	The effect of salt and particle concentration on the dynamic self-assembly of detonation nanodiamonds in water. Nanoscale, 2021, 13, 14110-14118.	2.8	11
12	Translational and rotational diffusion coefficients of gold nanorods functionalized with a high molecular weight, thermoresponsive ligand: a depolarized dynamic light scattering study. Soft Matter, 2021, 17, 4019-4026.	1.2	12
13	Analysis of Pathogenic Bacterial and Yeast Biofilms Using the Combination of Synchrotron ATR-FTIR Microspectroscopy and Chemometric Approaches. Molecules, 2021, 26, 3890.	1.7	28
14	Nanostructure of a deep eutectic solvent at solid interfaces. Journal of Colloid and Interface Science, 2021, 591, 38-51.	5.0	27
15	Structural aspects of a self-emulsifying multifunctional amphiphilic excipient: Part I. The case of Gelucire® 44/14. Journal of Molecular Liquids, 2021, 340, 117172.	2.3	2
16	Cryopreservation of mammalian cells using protic ionic liquid solutions. Journal of Colloid and Interface Science, 2021, 603, 491-500.	5.0	10
17	Structural aspects of a self-emulsifying multifunctional amphiphilic excipient: Part II. The case of Cremophor EL. Journal of Molecular Liquids, 2021, 344, 117881.	2.3	5
18	Differential dynamic microscopy to measure the translational diffusion coefficient of nanorods. Journal of Physics Condensed Matter, 2020, 32, 115102.	0.7	2

#	Article	IF	CITATIONS
19	Interactions of cryoprotective agents with phospholipid membranes - A Langmuir monolayer study. Chemistry and Physics of Lipids, 2020, 231, 104949.	1.5	19
20	Antibacterial Action of Nanoparticles by Lethal Stretching of Bacterial Cell Membranes. Advanced Materials, 2020, 32, e2005679.	11.1	102
21	A Hitchhiker's Guide to Particle Sizing Techniques. Langmuir, 2020, 36, 10307-10320.	1.6	15
22	Micro- to nano-scale chemical and mechanical mapping of antimicrobial-resistant fungal biofilms. Nanoscale, 2020, 12, 19888-19904.	2.8	12
23	Dynamic self-assembly of detonation nanodiamond in water. Nanoscale, 2020, 12, 5363-5367.	2.8	34
24	Incorporation of Vanadium and Molybdenum into Yttrium-Arsenotungstates Supported by Amino Acid Ligands. Australian Journal of Chemistry, 2020, 73, 137.	0.5	0
25	Encapsulation, Visualization and Expression of Genes with Biomimetically Mineralized Zeolitic Imidazolate Frameworkâ€8 (ZIFâ€8). Small, 2019, 15, e1902268.	5.2	95
26	Interaction of Giant Unilamellar Vesicles with the Surface Nanostructures on Dragonfly Wings. Langmuir, 2019, 35, 2422-2430.	1.6	18
27	Gene Therapy: Encapsulation, Visualization and Expression of Genes with Biomimetically Mineralized Zeolitic Imidazolate Frameworkâ€8 (ZIFâ€8) (Small 36/2019). Small, 2019, 15, 1970193.	5.2	4
28	Highly Living Stars via Core-First Photo-RAFT Polymerization: Exploitation for Ultra-High Molecular Weight Star Synthesis. ACS Macro Letters, 2019, 8, 1291-1295.	2.3	50
29	Measuring volume kinetics of human monocytes in response to cryoprotectants using microfluidic technologies. Applied Physics Letters, 2019, 114, 223702.	1.5	5
30	Compositional relaxation on the approach to the glass transition in a model trehalose solution. Physical Review E, 2019, 99, 032602.	0.8	2
31	Structure Analysis of Solid Lipid Nanoparticles for Drug Delivery: A Combined USANS/SANS Study. Particle and Particle Systems Characterization, 2019, 36, 1800359.	1.2	20
32	Identifying Trends in Gold Nanoparticle Toxicity and Uptake: Size, Shape, Capping Ligand, and Biological Corona. ACS Omega, 2019, 4, 242-256.	1.6	186
33	Synthesis of ultraâ€high molecular weight polymers by controlled production of initiating radicals. Journal of Polymer Science Part A, 2019, 57, 1922-1930.	2.5	28
34	Characterisation of sorghum starch granules using <scp>SAXS</scp> : effects of moisture on crystallinity and structure. International Journal of Food Science and Technology, 2019, 54, 744-751.	1.3	4
35	A Depolarized Dynamic Light Scattering Method to Calculate Translational and Rotational Diffusion Coefficients of Nanorods. Particle and Particle Systems Characterization, 2019, 36, 1800388.	1.2	25
36	Effect of deuteration on the phase behaviour and structure of lamellar phases of phosphatidylcholines – Deuterated lipids as proxies for the physical properties of native bilayers. Colloids and Surfaces B: Biointerfaces, 2019, 177, 196-203.	2.5	27

#	Article	IF	CITATIONS
37	n-Octyl (Thio)glycosides as Potential Cryoprotectants: Glass Transition Behaviour, Membrane Permeability, and Ice Recrystallization Inhibition Studies. Australian Journal of Chemistry, 2019, 72, 637.	0.5	10
38	Impact of nanogold morphology on interactions with human serum. Physical Chemistry Chemical Physics, 2018, 20, 29558-29565.	1.3	20
39	Impact of Comonomer Chemistry on Phase Behavior of Polymerizable Lyotropic Ionic Liquid Crystals: A Pre―and Postâ€Polymerization Study. Macromolecular Chemistry and Physics, 2018, 219, 1800307.	1.1	3
40	Blood atalyzed RAFT Polymerization. Angewandte Chemie, 2018, 130, 10445-10449.	1.6	15
41	Visible-Light-Driven "Onâ€f"Off―Photochromism of a Polyoxometalate Diarylethene Coordination Complex. Journal of the American Chemical Society, 2018, 140, 10482-10487.	6.6	60
42	Blood atalyzed RAFT Polymerization. Angewandte Chemie - International Edition, 2018, 57, 10288-10292.	7.2	60
43	Dramatic slowing of compositional relaxations in the approach to the glass transition for a bimodal colloidal suspension. Physical Review E, 2017, 96, 022609.	0.8	2
44	Intrinsically Disordered Stress Protein COR15A Resides at the Membrane Surface during Dehydration. Biophysical Journal, 2017, 113, 572-579.	0.2	51
45	Gold Nanoparticle Biodistribution and Toxicity: Role of Biological Corona in Relation with Nanoparticle Characteristics. , 2017, , 419-436.		5
46	A Gallium-Based Magnetocaloric Liquid Metal Ferrofluid. Nano Letters, 2017, 17, 7831-7838.	4.5	101
47	Size, shape and surface chemistry of nano-gold dictate its cellular interactions, uptake and toxicity. Progress in Materials Science, 2016, 83, 152-190.	16.0	135
48	Structure of solid lipid nanoparticles produced by a microwave-assisted microemulsion technique. RSC Advances, 2016, 6, 36803-36810.	1.7	21
49	Dynamics of a model colloidal suspension from dilute to freezing. Physical Review E, 2016, 94, 012619.	0.8	7
50	Photomodulation of bacterial growth and biofilm formation using carbohydrate-based surfactants. Chemical Science, 2016, 7, 6628-6634.	3.7	43
51	Mixed-Metal Hybrid Polyoxometalates with Amino Acid Ligands: Electronic Versatility and Solution Properties. Inorganic Chemistry, 2016, 55, 12329-12347.	1.9	14
52	Distribution of Solute Molecules in Bilayer Stacks by Medium Angle Diffraction. Biophysical Journal, 2016, 110, 81a.	0.2	0
53	Sonication synthesis of micro-sized silver nanoparticle/oleic acid liquid marbles: A novel SERS sensing platform. Sensors and Actuators B: Chemical, 2016, 223, 52-58.	4.0	20
54	Molecular dynamics simulation study of the static and dynamic properties of a model colloidal suspension with explicit solvent. Molecular Simulation, 2016, 42, 511-521.	0.9	3

#	Article	IF	CITATIONS
55	Anodized nanoporous WO3Schottky contact structures for hydrogen and ethanol sensing. Journal of Materials Chemistry A, 2015, 3, 7994-8001.	5.2	71
56	Disposition and crystallization of saturated fatty acid in mixed micelles of relevance to lipid digestion. Journal of Colloid and Interface Science, 2015, 449, 160-166.	5.0	43
57	Characterization of the phase behaviour of a novel polymerizable lyotropic ionic liquid crystal. Physical Chemistry Chemical Physics, 2015, 17, 23059-23068.	1.3	22
58	Easy Come, Easy Go: Capillary Forces Enable Rapid Refilling of Embolized Primary Xylem Vessels. Plant Physiology, 2015, 168, 1636-1647.	2.3	33
59	Direct Comparison of Disaccharide Interaction with Lipid Membranes at Reduced Hydrations. Langmuir, 2015, 31, 9134-9141.	1.6	23
60	Characterization of the interactions within fine particle mixtures in highly concentrated suspensions for advanced particle processing. Advances in Colloid and Interface Science, 2015, 226, 37-43.	7.0	24
61	Microwave assisted synthesis of a mono organoimido functionalized Anderson polyoxometalate. Dalton Transactions, 2015, 44, 20826-20829.	1.6	20
62	Disordered Cold Regulated15 Proteins Protect Chloroplast Membranes during Freezing through Binding and Folding, But Do Not Stabilize Chloroplast Enzymes in Vivo. Plant Physiology, 2014, 166, 190-201.	2.3	108
63	Modular Molecules: Siteâ€Selective Metal Substitution, Photoreduction, and Chirality in Polyoxometalate Hybrids. Chemistry - A European Journal, 2014, 20, 14102-14111.	1.7	30
64	Water redistribution determines photosynthetic responses to warming and drying in two polar mosses. Functional Plant Biology, 2014, 41, 178.	1.1	11
65	Localization of trehalose in partially hydrated DOPC bilayers: insights into cryoprotective mechanisms. Journal of the Royal Society Interface, 2014, 11, 20140069.	1.5	39
66	Synthesis and self-assembly of polyimide/poly(dimethylsiloxane) brush triblock copolymers. Polymer, 2013, 54, 520-529.	1.8	13
67	Novel drug carriers: from grafted polymers to cross-linked vesicles. Chemical Communications, 2013, 49, 33-35.	2.2	43
68	Phospholipid Membrane Protection by Sugar Molecules during Dehydration—Insights into Molecular Mechanisms Using Scattering Techniques. International Journal of Molecular Sciences, 2013, 14, 8148-8163.	1.8	29
69	From Knock-Out Phenotype to Three-Dimensional Structure of a Promising Antibiotic Target from Streptococcus pneumoniae. PLoS ONE, 2013, 8, e83419.	1.1	22
70	Development of cryopreservation for Loxocarya cinereaan endemic Australian plant species important for post-mining restoration. Cryo-Letters, 2013, 34, 508-19.	0.1	8
71	Stabilization of Peptideâ€Based Vesicles via in situ Oxygenâ€Mediated Crossâ€Linking. Macromolecular Bioscience, 2012, 12, 1220-1231.	2.1	26
72	Differential Dynamic Microscopy of Bacterial Motility. Physical Review Letters, 2011, 106, 018101.	2.9	165

#	Article	IF	CITATIONS
73	Dynamics of hard sphere suspensions using dynamic light scattering and X-ray photon correlation spectroscopy: Dynamics and scaling of the intermediate scattering function. Journal of Chemical Physics, 2011, 134, 054505.	1.2	24
74	Kinetics of the lamellar gel–fluid transition in phosphatidylcholine membranes in the presence of sugars. Chemistry and Physics of Lipids, 2010, 163, 236-242.	1.5	13
75	Freeze avoidance: a dehydrating moss gathers no ice. Plant, Cell and Environment, 2010, 33, 1731-1741.	2.8	48
76	Aging dynamics of colloidal hard sphere glasses. Journal of Chemical Physics, 2010, 133, 114906.	1.2	13
77	Measurement of glucose exclusion from the fully hydrated DOPE inverse hexagonal phase. Soft Matter, 2010, 6, 1197.	1.2	21
78	Arrest of Flow and Emergence of Activated Processes at the Glass Transition of a Suspension of Particles with Hard Spherelike Interactions. Physical Review Letters, 2009, 102, 168301.	2.9	27
79	Scaling of the Space-Time Correlation Function of Particle Currents in a Suspension of Hard-Sphere-Like Particles: Exposing When the Motion of Particles is Brownian. Physical Review Letters, 2009, 103, 258302.	2.9	13
80	The inverse hexagonal – inverse ribbon – lamellar gel phase transition sequence in low hydration DOPC:DOPE phospholipid mixtures. Chemistry and Physics of Lipids, 2009, 157, 56-60.	1.5	15
81	Two-dimensional crystallization of hard sphere particles at a liquid–liquid interface. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2009, 346, 208-212.	2.3	9
82	Effects of Sugars on Lipid Bilayers during Dehydration â^' SAXS/WAXS Measurements and Quantitative Model. Journal of Physical Chemistry B, 2009, 113, 2486-2491.	1.2	39
83	Crystallization of Dense Binary Hard-Sphere Mixtures with Marginal Size Ratio. Physical Review Letters, 2008, 100, 225502.	2.9	37
84	Slow Dynamics and Aging of a Colloidal Hard Sphere Glass. Physical Review Letters, 2008, 101, 135702.	2.9	41
85	Effect of polydispersity on the crystallization kinetics of suspensions of colloidal hard spheres when approaching the glass transition. Journal of Chemical Physics, 2007, 127, 084505.	1.2	74
86	Dynamical heterogeneity and the freezing transition in hard-sphere suspensions: Further analysis of the mean square displacement and the velocity autocorrelation function. Physical Review E, 2007, 76, 021402.	0.8	12
87	How much solute is needed to inhibit the fluid to gel membrane phase transition at low hydration?. Biochimica Et Biophysica Acta - Biomembranes, 2007, 1768, 1019-1022.	1.4	32
88	Preparation and Characterization of Particles with Small Differences in Polydispersity. Langmuir, 2007, 23, 11534-11539.	1.6	33
89	Dynamical signatures of freezing: Stable fluids, metastable fluids, and crystals. Physical Review E, 2006, 74, 031204.	0.8	12
90	Velocity Autocorrelation Functions of Hard-Sphere Fluids: Long-Time Tails upon Undercooling. Physical Review Letters, 2006, 96, .	2.9	49

#	Article	IF	CITATIONS
91	Crystallization of hard-sphere colloids deviations from classical nucleation theory. , 2006, , .		0
92	Location of sugars in multilamellar membranes at low hydration. Physica B: Condensed Matter, 2006, 385-386, 862-864.	1.3	26
93	Properties of hydrophobically modified polyacrylamide with low molecular weight and interaction with surfactant in aqueous solution. Journal of Applied Polymer Science, 2006, 100, 4348-4360.	1.3	26
94	Small changes in particle-size distribution dramatically delay and enhance nucleation in hard sphere colloidal suspensions. Physical Review E, 2006, 74, 060401.	0.8	35
95	Two-Step Crystallization Kinetics in Colloidal Hard-Sphere Systems. Physical Review Letters, 2006, 96, 175701.	2.9	164
96	Dehydration in model membranes and protoplasts: contrasting effects at low, intermediate and high hydrations , 2006, , 219-234.		12
97	Crystallization kinetics of polydisperse colloidal hard spheres. II. Binary mixtures. Physical Review E, 2005, 71, 021404.	0.8	40
98	Change in relaxation scenario at the order-disorder transition of a colloidal fluid of hard spheres seen from the Gaussian limit of the self-intermediate scattering function. Physical Review E, 2005, 72, 031402.	0.8	19
99	Dehydration of solute–lipid systems: hydration forces analysis. Colloids and Surfaces B: Biointerfaces, 2004, 35, 73-79.	2.5	14
100	Exclusion of maltodextrins from phosphatidylcholine multilayers during dehydration: effects on membrane phase behaviour. European Biophysics Journal, 2003, 32, 96-105.	1.2	50
101	Accurate Measurement of Small Polydispersities in Colloidal Suspensions. Langmuir, 2003, 19, 616-621.	1.6	31
102	Observation of a Smecticlike Crystalline Structure in Polydisperse Colloids. Physical Review Letters, 2003, 90, 255702.	2.9	24
103	Crystallization kinetics of polydisperse colloidal hard spheres: Experimental evidence for local fractionation. Physical Review E, 2003, 67, 061405.	0.8	51
104	How hard is a colloidal "hard-sphere―interaction?. Physical Review E, 2002, 66, 060501.	0.8	98
105	A Bragg scattering spectrometer for studying crystallization of colloidal suspensions. Review of Scientific Instruments, 2002, 73, 3878-3884.	0.6	16
106	Membrane behaviour in seeds and other systems at low water content: the various effects of solutes. Seed Science Research, 2001, 11, 17-25.	0.8	108
107	Cellular cryobiology: thermodynamic and mechanical effects. International Journal of Refrigeration, 2001, 24, 438-450.	1.8	126
108	Effects of Vitrified and Nonvitrified Sugars on Phosphatidylcholine Fluid-to-Gel Phase Transitions. Biophysical Journal, 2000, 78, 1932-1946.	0.2	183

#	Article	IF	CITATIONS
109	Optical Contrast Variation Study of Nonaqueous Suspensions of Polymer Particles. Journal of Colloid and Interface Science, 1999, 216, 401-408.	5.0	18
110	Freezing, Drying, and/or Vitrification of Membrane– Solute–Water Systems. Cryobiology, 1999, 39, 103-129.	0.3	356
111	The Estimation of Multiple Light Scattering in Turbid Colloidal Suspensions using a 2-Probe Detector. Particle and Particle Systems Characterization, 1998, 15, 170-173.	1.2	2
112	Correspondence. Biochimica Et Biophysica Acta - Biomembranes, 1997, 1329, 202.	1.4	0
113	Improved Particle Size Distribution Measurements Using Multiangle Dynamic Light Scattering. 2. Refinements and Applications. Langmuir, 1996, 12, 6224-6228.	1.6	59
114	SPECIFIC FORCES BETWEEN DNA BASES. Modern Physics Letters B, 1996, 10, 81-99.	1.0	16
115	DSC Measurement of Cell Suspensions during Successive Freezing Runs: Implications for the Mechanisms of Intracellular Ice Formation. Cryobiology, 1995, 32, 114-128.	0.3	47
116	Improved Particle Size Distribution Measurements Using Multiangle Dynamic Light Scattering. Langmuir, 1995, 11, 2480-2485.	1.6	92
117	Long-Range Attraction between Nucleosides with Short-Range Specificity: Direct Measurements. Physical Review Letters, 1994, 73, 2780-2783.	2.9	64
118	Interactions between soluble sugars and POPC (1-palmitoyl-2-oleoylphosphatidylcholine) during dehydration: vitrification of sugars alters the phase behavior of the phospholipid. Biochimica Et Biophysica Acta - Biomembranes, 1994, 1193, 143-150.	1.4	177
119	Membrane damage at low hydrations: Lipid phase behaviour and the effect of solutes. , 1993, , 187-187.		0
120	Motional narrowing of the 2H NMR spectra near the chain melting transition of phospholipid/D2O mixtures. European Biophysics Journal, 1992, 21, 363-7.	1.2	7
121	Low hydration phase properties of phospholipid mixtures. European Biophysics Journal, 1992, 21, 223.	1.2	38
122	Can hydration forces induce lateral phase separations in lamellar phases?. European Biophysics Journal, 1989, 16, 369-74.	1.2	33
123	What is "dielectrophoresisâ€ ? . Bioelectrochemistry, 1988, 19, 347-352.	1.0	2
124	What is "dielectrophoresis�. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1988, 253, 347-352.	0.3	0
125	Sum rules for Mie scattering. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 1987, 4, 795.	0.8	3
126	Electromechanical stresses produced in the plasma membranes of suspended cells by applied electric fields. Journal of Membrane Biology, 1987, 96, 129-139.	1.0	120

#	Article	IF	CITATIONS
127	Asymptotic behavior of the Mie-scattering amplitude. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 1986, 3, 256.	0.8	9