List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2312020/publications.pdf Version: 2024-02-01

		29994	20307
118	18,464	54	116
papers	citations	h-index	g-index
123	123	123	17019
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Nucleic Acids Research, 2007, 35, 7188-7196.	6.5	5,788
2	Substrate-Controlled Succession of Marine Bacterioplankton Populations Induced by a Phytoplankton Bloom. Science, 2012, 336, 608-611.	6.0	1,304
3	Bacterioplankton Compositions of Lakes and Oceans: a First Comparison Based on Fluorescence In Situ Hybridization. Applied and Environmental Microbiology, 1999, 65, 3721-3726.	1.4	746
4	From The Cover: Massive nitrogen loss from the Benguela upwelling system through anaerobic ammonium oxidation. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 6478-6483.	3.3	664
5	Single-cell identification in microbial communities by improved fluorescence in situ hybridization techniques. Nature Reviews Microbiology, 2008, 6, 339-348.	13.6	647
6	Recurring patterns in bacterioplankton dynamics during coastal spring algae blooms. ELife, 2016, 5, e11888.	2.8	414
7	Flow Cytometric Analysis of the In Situ Accessibility of <i>Escherichia coli</i> 16S rRNA for Fluorescently Labeled Oligonucleotide Probes. Applied and Environmental Microbiology, 1998, 64, 4973-4982.	1.4	348
8	Diversity and Abundance of Aerobic and Anaerobic Methane Oxidizers at the Haakon Mosby Mud Volcano, Barents Sea. Applied and Environmental Microbiology, 2007, 73, 3348-3362.	1.4	338
9	The identification of microorganisms by fluorescence in situ hybridisation. Current Opinion in Biotechnology, 2001, 12, 231-236.	3.3	325
10	Detoxification of sulphidic African shelf waters by blooming chemolithotrophs. Nature, 2009, 457, 581-584.	13.7	297
11	High Rate of Uptake of Organic Nitrogen Compounds by Prochlorococcus Cyanobacteria as a Key to Their Dominance in Oligotrophic Oceanic Waters. Applied and Environmental Microbiology, 2003, 69, 1299-1304.	1.4	262
12	Unlabeled Helper Oligonucleotides Increase the In Situ Accessibility to 16S rRNA of Fluorescently Labeled Oligonucleotide Probes. Applied and Environmental Microbiology, 2000, 66, 3603-3607.	1.4	259
13	A microdiversity study of anammox bacteria reveals a novel <i>Candidatus</i> Scalindua phylotype in marine oxygen minimum zones. Environmental Microbiology, 2008, 10, 3106-3119.	1.8	250
14	Linking the composition of bacterioplankton to rapid turnover of dissolved dimethylsulphoniopropionate in an algal bloom in the North Sea. Environmental Microbiology, 2001, 3, 304-311.	1.8	243
15	Improved sensitivity of whole-cell hybridization by the combination of horseradish peroxidase-labeled oligonucleotides and tyramide signal amplification. Applied and Environmental Microbiology, 1997, 63, 3268-3273.	1.4	225
16	Ubiquitous <i>Gammaproteobacteria</i> dominate dark carbon fixation in coastal sediments. ISME Journal, 2016, 10, 1939-1953.	4.4	223
17	Potential Interactions of Particle-Associated Anammox Bacteria with Bacterial and Archaeal Partners in the Namibian Upwelling System. Applied and Environmental Microbiology, 2007, 73, 4648-4657.	1.4	220
18	Latitudinal distribution of prokaryotic picoplankton populations in the Atlantic Ocean.	1.8	219

Environmental Microbiology, 2009, 11, 2078-2093.

#	Article	IF	CITATIONS
19	The small unicellular diazotrophic symbiont, UCYN-A, is a key player in the marine nitrogen cycle. Nature Microbiology, 2016, 1, 16163.	5.9	194
20	Comparison of Cellular and Biomass Specific Activities of Dominant Bacterioplankton Groups in Stratified Waters of the Celtic Sea. Applied and Environmental Microbiology, 2001, 67, 5210-5218.	1.4	191
21	Changes in community composition during dilution cultures of marine bacterioplankton as assessed by flow cytometric and molecular biological techniques. Environmental Microbiology, 2000, 2, 191-201.	1.8	158
22	Flow sorting of microorganisms for molecular analysis. Applied and Environmental Microbiology, 1997, 63, 4223-4231.	1.4	157
23	In Situ Accessibility of Small-Subunit rRNA of Members of the Domains Bacteria , Archaea , and Eucarya to Cy3-Labeled Oligonucleotide Probes. Applied and Environmental Microbiology, 2003, 69, 1748-1758.	1.4	152
24	Flow Sorting of Marine Bacterioplankton after Fluorescence In Situ Hybridization. Applied and Environmental Microbiology, 2004, 70, 6210-6219.	1.4	149
25	An alternative polysaccharide uptake mechanism of marine bacteria. ISME Journal, 2017, 11, 1640-1650.	4.4	149
26	Comparison of bacterial communities on limnic versus coastal marine particles reveals profound differences in colonization. Environmental Microbiology, 2015, 17, 3500-3514.	1.8	148
27	Distinct flavobacterial communities in contrasting water masses of the North Atlantic Ocean. ISME Journal, 2010, 4, 472-487.	4.4	143
28	Genomic content of uncultured <i>Bacteroidetes</i> from contrasting oceanic provinces in the North Atlantic Ocean. Environmental Microbiology, 2012, 14, 52-66.	1.8	137
29	Molecular identification of picoplankton populations in contrasting waters of the Arabian Sea. Aquatic Microbial Ecology, 2005, 39, 145-157.	0.9	131
30	Rapid turnover of dissolved DMS and DMSP by defined bacterioplankton communities in the stratified euphotic zone of the North Sea. Deep-Sea Research Part II: Topical Studies in Oceanography, 2002, 49, 3017-3038.	0.6	124
31	Characterization of a marine gammaproteobacterium capable of aerobic anoxygenic photosynthesis. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 2891-2896.	3.3	120
32	Fluorescence in situ hybridization of 16S rRNA gene clones (Clone-FISH) for probe validation and screening of clone libraries. Environmental Microbiology, 2002, 4, 713-720.	1.8	113
33	Determination of Total Protein Content of Bacterial Cells by SYPRO Staining and Flow Cytometry. Applied and Environmental Microbiology, 1999, 65, 3251-3257.	1.4	105
34	Microbial control of phosphate in the nutrient-depleted North Atlantic subtropical gyre. Environmental Microbiology, 2007, 9, 2079-2089.	1.8	105
35	Selfish, sharing and scavenging bacteria in the Atlantic Ocean: a biogeographical study of bacterial substrate utilisation. ISME Journal, 2019, 13, 1119-1132.	4.4	103
36	In Situ Accessibility of Escherichia coli 23S rRNA to Fluorescently Labeled Oligonucleotide Probes. Applied and Environmental Microbiology, 2001, 67, 961-968.	1.4	99

#	Article	IF	CITATIONS
37	Seasonal Dynamics and Modeling of a Vibrio Community in Coastal Waters of the North Sea. Microbial Ecology, 2012, 63, 543-551.	1.4	95
38	Oxygen minimum zone cryptic sulfur cycling sustained by offshore transport of key sulfur oxidizing bacteria. Nature Communications, 2018, 9, 1729.	5.8	93
39	Colonization in the Photic Zone and Subsequent Changes during Sinking Determine Bacterial Community Composition in Marine Snow. Applied and Environmental Microbiology, 2015, 81, 1463-1471.	1.4	89
40	SAR11 dominance among metabolically active low nucleic acid bacterioplankton in surface waters along an Atlantic meridional transect. Aquatic Microbial Ecology, 2006, 45, 107-113.	0.9	85
41	Adaptive mechanisms that provide competitive advantages to marine bacteroidetes during microalgal blooms. ISME Journal, 2018, 12, 2894-2906.	4.4	84
42	The effect of nutrients on carbon and nitrogen fixation by the UCYN-A–haptophyte symbiosis. ISME Journal, 2015, 9, 1635-1647.	4.4	83
43	The Photosynthetic Apparatus and Its Regulation in the Aerobic Gammaproteobacterium Congregibacter litoralis gen. nov., sp. nov. PLoS ONE, 2009, 4, e4866.	1.1	83
44	Depth related amino acid uptake by Prochlorococcus cyanobacteria in the Southern Atlantic tropical gyre. FEMS Microbiology Ecology, 2004, 50, 153-161.	1.3	78
45	Phylogenetic characterisation of picoplanktonic populations with high and low nucleic acid content in the North Atlantic Ocean. Systematic and Applied Microbiology, 2011, 34, 470-475.	1.2	77
46	In situ identification and N2 and C fixation rates of uncultivated cyanobacteria populations. Systematic and Applied Microbiology, 2013, 36, 259-271.	1.2	76
47	GeneFISH – an <i>in situ</i> technique for linking gene presence and cell identity in environmental microorganisms. Environmental Microbiology, 2010, 12, 3057-3073.	1.8	75
48	Is the In Situ Accessibility of the 16S rRNA of Escherichia coli for Cy3-Labeled Oligonucleotide Probes Predicted by a Three-Dimensional Structure Model of the 30S Ribosomal Subunit?. Applied and Environmental Microbiology, 2003, 69, 4935-4941.	1.4	73
49	Marine Proteobacteria metabolize glycolate via the β-hydroxyaspartate cycle. Nature, 2019, 575, 500-504.	13.7	71
50	Biogeography and phylogeny of the NOR5/OM60 clade of Gammaproteobacteria. Systematic and Applied Microbiology, 2009, 32, 124-139.	1.2	68
51	Prokaryoplankton standing stocks in oligotrophic gyre and equatorial provinces of the Atlantic Ocean: Evaluation of inter-annual variability. Deep-Sea Research Part II: Topical Studies in Oceanography, 2006, 53, 1530-1547.	0.6	64
52	Comparable light stimulation of organic nutrient uptake by SAR11 and <i>Prochlorococcus</i> in the North Atlantic subtropical gyre. ISME Journal, 2013, 7, 603-614.	4.4	64
53	MiL-FISH: Multilabeled Oligonucleotides for Fluorescence <i>In Situ</i> Hybridization Improve Visualization of Bacterial Cells. Applied and Environmental Microbiology, 2016, 82, 62-70.	1.4	64
54	<i>Verrucomicrobiota</i> are specialist consumers of sulfated methyl pentoses during diatom blooms. ISME Journal, 2022, 16, 630-641.	4.4	62

#	Article	IF	CITATIONS
55	Taxonomy and evolution of bacteriochlorophyll a-containing members of the OM60/NOR5 clade of marine gammaproteobacteria: description of Luminiphilus syltensis gen. nov., sp. nov., reclassification of Haliea rubra as Pseudohaliea rubra gen. nov., comb. nov., and emendation of Chromatocurvus halotolerans. BMC Microbiology, 2013, 13, 118.	1.3	61
56	Microbial Community Response during the Iron Fertilization Experiment LOHAFEX. Applied and Environmental Microbiology, 2012, 78, 8803-8812.	1.4	58
57	Diatom fucan polysaccharide precipitates carbon during algal blooms. Nature Communications, 2021, 12, 1150.	5.8	58
58	Dilution cultivation of marine heterotrophic bacteria abundant after a spring phytoplankton bloom in the <scp>N</scp> orth <scp>S</scp> ea. Environmental Microbiology, 2015, 17, 3515-3526.	1.8	56
59	Polysaccharide utilisation loci of <i>Bacteroidetes</i> from two contrasting open ocean sites in the North Atlantic. Environmental Microbiology, 2016, 18, 4456-4470.	1.8	56
60	Structure of bacterial communities in aquatic systems as revealed by filter PCR. Aquatic Microbial Ecology, 2001, 26, 13-22.	0.9	55
61	Temporal Variability of Coastal Planctomycetes Clades at Kabeltonne Station, North Sea. Applied and Environmental Microbiology, 2011, 77, 5009-5017.	1.4	52
62	Contrasting extracellular enzyme activities of particle-associated bacteria from distinct provinces of the North Atlantic Ocean. Frontiers in Microbiology, 2012, 3, 425.	1.5	52
63	Mesoscale distribution of dominant bacterioplankton groups in the northern North Sea in early summer. Aquatic Microbial Ecology, 2002, 29, 135-144.	0.9	52
64	Differential microbial uptake of dissolved amino acids and amino sugars in surface waters of the Atlantic Ocean. Journal of Plankton Research, 2007, 30, 211-220.	0.8	51
65	Directâ€geneFISH: a simplified protocol for the simultaneous detection and quantification of genes and rRNA in microorganisms. Environmental Microbiology, 2017, 19, 70-82.	1.8	51
66	Practical application of self-organizing maps to interrelate biodiversity and functional data in NGS-based metagenomics. ISME Journal, 2011, 5, 918-928.	4.4	50
67	Polysaccharide niche partitioning of distinct <i>Polaribacter</i> clades during North Sea spring algal blooms. ISME Journal, 2020, 14, 1369-1383.	4.4	50
68	Phylogeny and in situ identification of a morphologically conspicuous bacterium, Candidatus Magnospira bakii, present at very low frequency in activated sludge. Environmental Microbiology, 1999, 1, 125-135.	1.8	45
69	In Situ Accessibility of Saccharomyces cerevisiae 26S rRNA to Cy3-Labeled Oligonucleotide Probes Comprising the D1 and D2 Domains. Applied and Environmental Microbiology, 2003, 69, 2899-2905.	1.4	43
70	Mapping glycoconjugate-mediated interactions of marine Bacteroidetes with diatoms. Systematic and Applied Microbiology, 2013, 36, 417-425.	1.2	43
71	Graphical representation of ribosomal RNA probe accessibility data using ARB software package. BMC Bioinformatics, 2005, 6, 61.	1.2	42
72	Changing expression patterns of TonB-dependent transporters suggest shifts in polysaccharide consumption over the course of a spring phytoplankton bloom. ISME Journal, 2021, 15, 2336-2350.	4.4	42

#	Article	IF	CITATIONS
73	Niche differentiation among annually recurrent coastal Marine Group II Euryarchaeota. ISME Journal, 2019, 13, 3024-3036.	4.4	41
74	Candidatus Prosiliicoccus vernus, a spring phytoplankton bloom associated member of the Flavobacteriaceae. Systematic and Applied Microbiology, 2019, 42, 41-53.	1.2	39
75	A pipeline for targeted metagenomics of environmental bacteria. Microbiome, 2020, 8, 21.	4.9	39
76	Distribution of a consortium between unicellular algae and the <scp><scp>N₂</scp></scp> fixing cyanobacterium <scp>UCYN</scp> â€ <scp>A</scp> in the North Atlantic Ocean. Environmental Microbiology, 2014, 16, 3153-3167.	1.8	38
77	Modification of a High-Throughput Automatic Microbial Cell Enumeration System for Shipboard Analyses. Applied and Environmental Microbiology, 2016, 82, 3289-3296.	1.4	36
78	<i>Arcobacter peruensis</i> sp. nov., a Chemolithoheterotroph Isolated from Sulfide- and Organic-Rich Coastal Waters off Peru. Applied and Environmental Microbiology, 2019, 85, .	1.4	36
79	Shortâ€ŧerm changes in polysaccharide utilization mechanisms of marine bacterioplankton during a spring phytoplankton bloom. Environmental Microbiology, 2020, 22, 1884-1900.	1.8	34
80	Abundance and diversity of Planctomycetes in a Tyrrhenian coastal system of central Italy. Aquatic Microbial Ecology, 2011, 65, 129-141.	0.9	33
81	Highly diverse flavobacterial phages isolated from North Sea spring blooms. ISME Journal, 2022, 16, 555-568.	4.4	32
82	Clone libraries and single cell genome amplification reveal extended diversity of uncultivated magnetotactic bacteria from marine and freshwater environments. Environmental Microbiology, 2013, 15, 1290-1301.	1.8	31
83	Bacterioplankton diversity and community composition in the Southern Lagoon of Venice. Systematic and Applied Microbiology, 2010, 33, 128-138.	1.2	30
84	Metabolic versatility of a novel N ₂ â€fixing Alphaproteobacterium isolated from a marine oxygen minimum zone. Environmental Microbiology, 2018, 20, 755-768.	1.8	29
85	On-Site Analysis of Bacterial Communities of the Ultraoligotrophic South Pacific Gyre. Applied and Environmental Microbiology, 2019, 85, .	1.4	27
86	Coexistence of dominant groups in marine bacterioplankton community—a combination of experimental and modelling approaches. Journal of the Marine Biological Association of the United Kingdom, 2004, 84, 519-529.	0.4	26
87	"Pomacytosisâ€â€"Semi-extracellular phagocytosis of cyanobacteria by the smallest marine algae. PLoS Biology, 2018, 16, e2003502.	2.6	25
88	Rapid and sensitive identification of marine bacteria by an improved in situ DNA hybridization chain reaction (quickHCR-FISH). Systematic and Applied Microbiology, 2015, 38, 400-405.	1.2	23
89	Multilevel analysis of the bacterial diversity along the environmental gradient RÃo de la Plata–South Atlantic Ocean. Aquatic Microbial Ecology, 2010, 61, 57-72.	0.9	22
90	Diversity and biomass dynamics of unicellular marine fungi during a spring phytoplankton bloom. Environmental Microbiology, 2021, 23, 448-463.	1.8	22

#	Article	IF	CITATIONS
91	Chlamydial seasonal dynamics and isolation of â€~ <scp><i>C</i></scp> <i>andidatus</i> â€ <scp>N</scp> eptunochlamydia vexilliferae' from a <scp>T</scp> yrrhenian coastal lake. Environmental Microbiology, 2016, 18, 2405-2417.	1.8	21
92	High-throughput cultivation of heterotrophic bacteria during a spring phytoplankton bloom in the North Sea. Systematic and Applied Microbiology, 2020, 43, 126066.	1.2	21
93	Candidatus Abditibacter, a novel genus within the Cryomorphaceae, thriving in the North Sea. Systematic and Applied Microbiology, 2020, 43, 126088.	1.2	21
94	Variations in pelagic bacterial communities in the North Atlantic Ocean coincide with water bodies. Aquatic Microbial Ecology, 2013, 71, 131-140.	0.9	21
95	Concepts and software for a rational design of polynucleotide probes. Environmental Microbiology Reports, 2011, 3, 69-78.	1.0	18
96	Organic Carbon Degradation in Anoxic Organic-Rich Shelf Sediments: Biogeochemical Rates and Microbial Abundance. Geomicrobiology Journal, 2010, 27, 303-314.	1.0	17
97	Stable Composition of the Nano- and Picoplankton Community during the Ocean Iron Fertilization Experiment LOHAFEX. PLoS ONE, 2014, 9, e113244.	1.1	16
98	Identification of Microorganisms Using the Ribosomal RNA Approach and Fluorescence In Situ Hybridization. , 2011, , 171-189.		15
99	Microbial metagenome-assembled genomes of the Fram Strait from short and long read sequencing platforms. PeerJ, 2021, 9, e11721.	0.9	14
100	The Effect of Nucleobase-Specific Fluorescence Quenching on In Situ Hybridization with rRNA-Targeted Oligonucleotide Probes. Systematic and Applied Microbiology, 2004, 27, 565-572.	1.2	13
101	Ammonium and attachment of Rhodopirellula baltica. Archives of Microbiology, 2011, 193, 365-72.	1.0	13
102	Genomic and physiological analyses of â€~ <i>Reinekea forsetii</i> ' reveal a versatile opportunistic lifestyle during spring algae blooms. Environmental Microbiology, 2017, 19, 1209-1221.	1.8	13
103	Single Cell Identification by Fluorescence In Situ Hybridization. , 0, , 886-896.		13
104	Influence of the Po River runoff on the bacterioplankton community along trophic and salinity gradients in the Northern Adriatic Sea. Marine Ecology, 2016, 37, 1386-1397.	0.4	12
105	Bioaerosols in the Amazon rain forest: temporal variations and vertical profiles of Eukarya, Bacteria, and Archaea. Biogeosciences, 2021, 18, 4873-4887.	1.3	12
106	High abundance of novel environmental chlamydiae in a Tyrrhenian coastal lake (Lago di Paola, Italy). Environmental Microbiology Reports, 2012, 4, 446-452.	1.0	11
107	Extensive Microbial Processing of Polysaccharides in the South Pacific Gyre via Selfish Uptake and Extracellular Hydrolysis. Frontiers in Microbiology, 2020, 11, 583158.	1.5	11
108	Rapid succession drives spring community dynamics of small protists at Helgoland Roads, North Sea. Journal of Plankton Research, 2020, 42, 305-319.	0.8	11

#	Article	IF	CITATIONS
109	Niche partitioning of the ubiquitous and ecologically relevant NS5 marine group. ISME Journal, 2022, 16, 1570-1582.	4.4	11
110	Flow cytometric sorting of fecal bacteria after in situ hybridization with polynucleotide probes. Systematic and Applied Microbiology, 2016, 39, 464-475.	1.2	10
111	Cultivable <i>Winogradskyella</i> species are genomically distinct from the sympatric abundant candidate species. ISME Communications, 2021, 1, .	1.7	10
112	Bacterioplankton reveal years-long retention of Atlantic deep-ocean water by the Tropic Seamount. Scientific Reports, 2020, 10, 4715.	1.6	8
113	Specific detection and quantification of the marine flavobacterial genus Zobellia on macroalgae using novel qPCR and CARD-FISH assays. Systematic and Applied Microbiology, 2021, 44, 126269.	1.2	8
114	Flow cytometric identification of <i>Mamiellales</i> clade II in the Southern Atlantic Ocean. FEMS Microbiology Ecology, 2013, 83, 664-671.	1.3	7
115	Internal and External Influences on Near-Surface Microbial Community Structure in the Vicinity of the Cape Verde Islands. Microbial Ecology, 2012, 63, 139-148.	1.4	5
116	Development of a 16S rRNA-targeted fluorescence in situ hybridization probe for quantification of the ammonia-oxidizer Nitrosotalea devanaterra and its relatives. Systematic and Applied Microbiology, 2018, 41, 408-413.	1.2	3
117	Strong seasonal differences of bacterial polysaccharide utilization in the North Sea over an annual cycle. Environmental Microbiology, 2022, 24, 2333-2347.	1.8	2
118	In situ visualization of glycoside hydrolase family 92 genes in marine flavobacteria. ISME Communications, 2021, 1, .	1.7	1