List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2311851/publications.pdf Version: 2024-02-01

TAESUNC KIM

#	Article	IF	CITATIONS
1	Pervaporation-assisted <i>in situ</i> formation of nanoporous microchannels with various material and structural properties. Lab on A Chip, 2022, 22, 1474-1485.	3.1	4
2	Spider-inspired regenerated silk fibroin fiber actuator via microfluidic spinning. Chemical Engineering Journal, 2022, 444, 136556.	6.6	20
3	Evaporation-driven transport-control of small molecules along nanoslits. Nature Communications, 2021, 12, 1336.	5.8	6
4	Direct Single-Step Printing of Conductive Grids on Curved Surfaces Using Template-Guided Foaming. ACS Applied Materials & Interfaces, 2021, 13, 19168-19175.	4.0	8
5	Triboelectric Nanogeneratorâ€Based Sensor Systems for Chemical or Biological Detection. Advanced Materials, 2021, 33, e2008276.	11.1	108
6	Portable triboelectric microfluidic system for self-powered sensors towards in-situ detection. Nano Energy, 2021, 85, 105980.	8.2	23
7	Numerical simulation of particle deposition patterns in evaporating droplets. Journal of Micromechanics and Microengineering, 2021, 31, 105007.	1.5	2
8	Review of microfluidic approaches for fabricating intelligent fiber devices: importance of shape characteristics. Lab on A Chip, 2021, 21, 1217-1240.	3.1	30
9	Combined Effects of Zeta-potential and Temperature of Nanopores on Diffusioosmotic Ion Transport. Analytical Chemistry, 2021, 93, 14169-14177.	3.2	7
10	Heterogeneous semiconductor nanowire array for sensitive broadband photodetector by crack photolithography-based micro-/nanofluidic platforms. RSC Advances, 2020, 10, 23712-23719.	1.7	3
11	Comprehensive Analysis and Control of Diffusioosmosis-Driven Ionic Transport Through Interconnected Nanoporous Membranes. , 2020, , .		0
12	Multimodal and Covert–Overt Convertible Structural Coloration Transformed by Mechanical Stress. Advanced Materials, 2020, 32, e2001467.	11.1	66
13	Double-Sided Microwells with a Stepped Through-Hole Membrane for High-Throughput Microbial Assays. Analytical Chemistry, 2020, 92, 9501-9510.	3.2	1
14	Low-electric-potential-assisted diffusiophoresis for continuous separation of nanoparticles on a chip. Lab on A Chip, 2020, 20, 2735-2747.	3.1	13
15	Structural Color Platforms: Multimodal and Covert–Overt Convertible Structural Coloration Transformed by Mechanical Stress (Adv. Mater. 25/2020). Advanced Materials, 2020, 32, 2070192.	11.1	6
16	Snake fang–inspired stamping patch for transdermal delivery of liquid formulations. Science Translational Medicine, 2019, 11, .	5.8	95
17	Controlled open-cell two-dimensional liquid foam generation for micro- and nanoscale patterning of materials. Nature Communications, 2019, 10, 3209.	5.8	10
18	Dynamic Transport Control of Colloidal Particles by Repeatable Active Switching of Solute Gradients. ACS Nano, 2019, 13, 12939-12948.	7.3	29

#	Article	IF	CITATIONS
19	Micro-/Nanofluidic Diffusiophoresis Platform for Simple Concentration and Extraction of Particles Using Ionic Solutions. , 2019, , .		0
20	Dynamic Culture and Selective Extraction of Target Microbial Cells in Self-Assembled Particle Membrane-Integrated Microfluidic Bioreactor Array. Analytical Chemistry, 2019, 91, 6162-6171.	3.2	8
21	Microâ€∤Nanofluidics for Liquidâ€Mediated Patterning of Hybridâ€Scale Material Structures. Advanced Materials, 2019, 31, e1804953.	11.1	30
22	High-Throughput Screening of Acyl-CoA Thioesterase I Mutants Using a Fluid Array Platform. ACS Omega, 2019, 4, 21848-21854.	1.6	1
23	High humidity- and contamination-resistant triboelectric nanogenerator with superhydrophobic interface. Nano Energy, 2019, 57, 903-910.	8.2	119
24	Reusable and storable whole-cell microbial biosensors with a microchemostat platform for in situ on-demand heavy metal detection. Sensors and Actuators B: Chemical, 2018, 264, 372-381.	4.0	21
25	Transparent-flexible-multimodal triboelectric nanogenerators for mechanical energy harvesting and self-powered sensor applications. Nano Energy, 2018, 48, 471-480.	8.2	63
26	Ultra-fast responsive colloidal–polymer composite-based volatile organic compounds (VOC) sensor using nanoscale easy tear process. Scientific Reports, 2018, 8, 5291.	1.6	21
27	Theoretical model and experimental validation for underwater oxygen extraction for realizing artificial gills. Sensors and Actuators A: Physical, 2018, 284, 103-111.	2.0	5
28	Nanochannel-Assisted Perovskite Nanowires: From Growth Mechanisms to Photodetector Applications. ACS Nano, 2018, 12, 8406-8414.	7.3	56
29	A Hierarchical Nanostructureâ€Based Surfaceâ€Enhanced Raman Scattering Sensor for Preconcentration and Detection of Antibiotic Pollutants. Advanced Materials Technologies, 2017, 2, 1700028.	3.0	20
30	A cracking-assisted micro-/nanofluidic fabrication platform for silver nanobelt arrays and nanosensors. Nanoscale, 2017, 9, 9622-9630.	2.8	18
31	Characterizing self-assembly and deposition behavior of nanoparticles in inkjet-printed evaporating droplets. Sensors and Actuators B: Chemical, 2017, 252, 1063-1070.	4.0	37
32	Long-Term and Programmable Bacterial Subculture in Completely Automated Microchemostats. Analytical Chemistry, 2017, 89, 9676-9684.	3.2	12
33	Nanoscale Hydrodynamic Film for Diffusive Mass Transport Control in Compartmentalized Microfluidic Chambers. Analytical Chemistry, 2017, 89, 10286-10295.	3.2	9
34	Inkjet-printed Ag micro-/nanostructure clusters on Cu substrates for in-situ pre-concentration and surface-enhanced Raman scattering. Sensors and Actuators B: Chemical, 2017, 243, 176-183.	4.0	20
35	Inkjet-printed AG micro-/nanostructure clusters on CU substrates for in-situ pre-concentration and surface-enhanced Raman scattering. , 2017, , .		0
36	Permanent encapsulation of nanoparticle patterns formed by inkjet printer for transparent and flexible anti-counterfeit applications. , 2017, , .		0

#	Article	IF	CITATIONS
37	Directional Reflective Surface Formed via Gradient-Impeding Acoustic Meta-Surfaces. Scientific Reports, 2016, 6, 32300.	1.6	35
38	A Microfluidic Platform for High-Throughput Screening of Small Mutant Libraries. Analytical Chemistry, 2016, 88, 5234-5242.	3.2	16
39	Unconventional micro-/nanofabrication technologies for hybrid-scale lab-on-a-chip. Lab on A Chip, 2016, 16, 4296-4312.	3.1	30
40	Inkjet Printing Based Mono-layered Photonic Crystal Patterning for Anti-counterfeiting Structural Colors. Scientific Reports, 2016, 6, 30885.	1.6	147
41	Development of a highly specific and sensitive cadmium and lead microbial biosensor using synthetic CadC-T7 genetic circuitry. Biosensors and Bioelectronics, 2016, 79, 701-708.	5.3	66
42	Self-assembled particle membranes for in situ concentration and chemostat-like cultivation of microorganisms on a chip. Lab on A Chip, 2016, 16, 1072-1080.	3.1	12
43	Review of microfluidic approaches for surface-enhanced Raman scattering. Sensors and Actuators B: Chemical, 2016, 227, 504-514.	4.0	72
44	Cracking-assisted fabrication of nanoscale patterns for micro/nanotechnological applications. Nanoscale, 2016, 8, 9461-9479.	2.8	48
45	Review of Micro/Nanotechnologies for Microbial Biosensors. Frontiers in Bioengineering and Biotechnology, 2015, 3, 61.	2.0	116
46	Chemostat-like microfluidic platform for highly sensitive detection of heavy metal ions using microbial biosensors. , 2015, , .		0
47	Cracking-assisted photolithography for mixed-scale patterning and nanofluidic applications. Nature Communications, 2015, 6, 6247.	5.8	92
48	Crack-Photolithography for Membrane-Free Diffusion-Based Micro/Nanofluidic Devices. Analytical Chemistry, 2015, 87, 11215-11223.	3.2	21
49	Inkjet-printing-based structural coloring for anti-counterfeit applications. , 2015, , .		3
50	Microfluidic static droplet array for analyzing microbial communication on a population gradient. Lab on A Chip, 2015, 15, 889-899.	3.1	53
51	Chemostat-like microfluidic platform for highly sensitive detection of heavy metal ions using microbial biosensors. Biosensors and Bioelectronics, 2015, 65, 257-264.	5.3	65
52	Multiphysics Simulation of Ion Concentration Polarization Induced by a Surface-Patterned Nanoporous Membrane in Single Channel Devices. Analytical Chemistry, 2014, 86, 10365-10372.	3.2	25
53	Aptamer-functionalized microtubules for continuous and selective concentration of target analytes. Sensors and Actuators B: Chemical, 2014, 202, 1229-1236.	4.0	9
54	Rapid and accurate generation of various concentration gradients using polydimethylsiloxane-sealed hydrogel device. Microfluidics and Nanofluidics, 2014, 16, 645-654.	1.0	6

#	Article	IF	CITATIONS
55	Multiphysics Simulation of Ion Concentration Polarization Induced by Nanoporous Membranes in Dual Channel Devices. Analytical Chemistry, 2014, 86, 7360-7367.	3.2	45
56	Pneumatically controlled multi-level microchannel for separation and extraction of microparticles. Sensors and Actuators B: Chemical, 2014, 190, 86-92.	4.0	6
57	Integration of nanoporous membranes into microfluidic devices: electrokinetic bio-sample pre-concentration. Analyst, The, 2013, 138, 6007.	1.7	28
58	lon concentration polarization in a single and open microchannel induced by a surface-patterned perm-selective film. Analyst, The, 2013, 138, 1370.	1.7	62
59	Productive Chemical Interaction between a Bacterial Microcolony Couple Is Enhanced by Periodic Relocation. Journal of the American Chemical Society, 2013, 135, 2242-2247.	6.6	31
60	Fabricating a multi-level barrier-integrated microfluidic device using grey-scale photolithography. Journal of Micromechanics and Microengineering, 2013, 23, 105015.	1.5	6
61	Switchable Gene Expression in Escherichia coli Using a Miniaturized Photobioreactor. PLoS ONE, 2013, 8, e52382.	1.1	22
62	Microfabricated ratchet structure integrated concentrator arrays for synthetic bacterial cell-to-cell communication assays. Lab on A Chip, 2012, 12, 3914.	3.1	19
63	Concentration gradient generation of multiple chemicals using spatially controlled self-assembly of particles in microchannels. Lab on A Chip, 2012, 12, 3968.	3.1	38
64	Patterning and transferring hydrogel-encapsulated bacterial cells for quantitative analysis of synthetically engineered genetic circuits. Biomaterials, 2012, 33, 624-633.	5.7	12
65	Microfluidic device for analyzing preferential chemotaxis and chemoreceptor sensitivity of bacterial cells toward carbon sources. Analyst, The, 2011, 136, 3238.	1.7	25
66	Patterning of various silicon structures via polymer lithography and catalytic chemical etching. Nanotechnology, 2011, 22, 275305.	1.3	12
67	A microfluidic concentrator array for quantitative predation assays of predatory microbes. Lab on A Chip, 2011, 11, 2916.	3.1	18
68	Synthetic multicellular cell-to-cell communication in inkjet printed bacterial cell systems. Biomaterials, 2011, 32, 2500-2507.	5.7	58
69	Microfluidic Technologies for Synthetic Biology. International Journal of Molecular Sciences, 2011, 12, 3576-3593.	1.8	32
70	Microbial linguistics: perspectives and applications of microbial cell-to-cell communication. BMB Reports, 2011, 44, 1-10.	1.1	24
71	Diffusion-Based and Long-Range Concentration Gradients of Multiple Chemicals for Bacterial Chemotaxis Assays. Analytical Chemistry, 2010, 82, 9401-9409.	3.2	61
72	Current Application of Micro/Nano-Interfaces to Stimulate and Analyze Cellular Responses. Annals of Biomedical Engineering, 2010, 38, 2056-2067.	1.3	4

TAESUNG KIM

#	Article	IF	CITATIONS
73	Synthetic biology for biofuels: Building designer microbes from the scratch. Biotechnology and Bioprocess Engineering, 2010, 15, 11-21.	1.4	29
74	Microfabricated ratchet structures for concentrating and patterning motile bacterial cells. Journal of Micromechanics and Microengineering, 2010, 20, 095006.	1.5	13
75	Micropatterning bacterial suspensions using aqueous two phase systems. Analyst, The, 2010, 135, 2848.	1.7	33
76	Generating steep, shear-free gradients of small molecules for cell culture. Biomedical Microdevices, 2009, 11, 65-73.	1.4	67
77	Patterned delivery and expression of gene constructs into zebrafish embryos using microfabricated interfaces. Biomedical Microdevices, 2009, 11, 633-641.	1.4	16
78	Biomolecular motor-driven molecular sorter. Lab on A Chip, 2009, 9, 1282.	3.1	31
79	Nanomechanical Model of Microtubule Translocation in the Presence of Electric Fields. Biophysical Journal, 2008, 94, 3880-3892.	0.2	39
80	Nanofluidic Concentration of Selectively Extracted Biomolecule Analytes by Microtubules. Analytical Chemistry, 2008, 80, 5383-5390.	3.2	23
81	Biomolecular motor-driven microtubule translocation in the presence of shear flow: analysis of redirection behaviours. Nanotechnology, 2007, 18, 025101.	1.3	30
82	Active Alignment of Microtubules with Electric Fields. Nano Letters, 2007, 7, 211-217.	4.5	73
83	Biomolecular motor-driven microtubule translocation in the presence of shear flow: modeling microtubule deflection due to shear. Biomedical Microdevices, 2007, 9, 501-511.	1.4	15
84	Design and performance evaluation of a 3-DOF mobile microrobot for micromanipulation. Journal of Mechanical Science and Technology, 2003, 17, 1268-1275.	0.4	4