
Sudip Kumar Pattanayek

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2311837/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Au nanoparticles decorated ZnO/ZnFe2O4 composite SERS-active substrate for melamine detection. Talanta, 2022, 236, 122819.	5.5	31
2	Graphitic carbon nitride-based concoction for detection of melamine and R6G using surface-enhanced Raman scattering. Carbon, 2022, 197, 311-323.	10.3	12
3	Translation of Polymeric Microneedles for Treatment of Human Diseases: Recent Trends, Progress, and Challenges. Pharmaceutics, 2021, 13, 1132.	4.5	27
4	Mathematical Modelling, Simulation and Optimisation of Microneedles for Transdermal Drug Delivery: Trends and Progress. Pharmaceutics, 2020, 12, 693.	4.5	27
5	Reactivity-Controlled Aggregation of Graphene Nanoflakes in Aluminum Matrix: Atomistic Molecular Dynamics Simulation. Journal of Physical Chemistry C, 2019, 123, 18017-18027.	3.1	10
6	Effect of Multiaxial Tensile Deformation on the Mechanical Properties of Semiflexible Polymeric Samples. Journal of Physical Chemistry B, 2019, 123, 9238-9249.	2.6	6
7	Interrelation of Elasticity, Isotherm of Adsorbed Proteins, and its Subsequent Displacement by a Surfactant. Industrial & Engineering Chemistry Research, 2019, 58, 7520-7530.	3.7	4
8	Dynamic shear rheology of colloidal suspensions of surface-modified silica nanoparticles in PEG. Journal of Nanoparticle Research, 2018, 20, 1.	1.9	11
9	Effect of characteristics of shear force on secondary structures and viscosity of bovine serum albumin solution. Rheologica Acta, 2018, 57, 801-812.	2.4	1
10	Evolution of nanostructure and mechanical properties of silver nano-particle in the confined region between graphene sheets: An atomistic investigation. Computational Materials Science, 2018, 152, 393-407.	3.0	8
11	Effect of Functional Groups of Self-Assembled Monolayers on Protein Adsorption and Initial Cell Adhesion. ACS Biomaterials Science and Engineering, 2018, 4, 3224-3233.	5.2	74
12	Morphology of self assembled monolayers using liquid phase reaction on silica and their effect on the morphology of adsorbed insulin. Applied Surface Science, 2017, 405, 503-513.	6.1	11
13	Effect of surface energy of solid surfaces on the micro- and macroscopic properties of adsorbed BSA and lysozyme. Biophysical Chemistry, 2017, 226, 14-22.	2.8	18
14	Role of hydrogen bond interactions in water–polyol medium in the thickening behavior of cornstarch suspensions. Colloid and Polymer Science, 2017, 295, 1117-1129.	2.1	8
15	Single-Walled Carbon Nanotube Engendered Pseudo-1D Morphologies of Silver Nanowire. Journal of Physical Chemistry C, 2017, 121, 20468-20480.	3.1	10
16	Effect of organization of semi-flexible polymers on mechanical properties of its composite with single wall carbon nanotubes. Composites Science and Technology, 2016, 134, 242-250.	7.8	13
17	Imaging of bacteria using chromonic liquid crystals. Molecular Crystals and Liquid Crystals, 2016, 625, 126-136.	0.9	3
18	Effect of Uniformly Applied Force and Molecular Characteristics of a Polymer Chain on Its Adhesion to Graphene Substrates. Langmuir, 2016, 32, 2750-2760.	3.5	13

SUDIP KUMAR PATTANAYEK

#	Article	IF	CITATIONS
19	Exploitation of orientation of liquid crystals 5CB and DSCG near surfaces to detect low protein concentration. Liquid Crystals, 2015, 42, 1506-1514.	2.2	9
20	Polymers encapsulated in short single wall carbon nanotubes: Pseudo-1D morphologies and induced chirality. Journal of Chemical Physics, 2015, 142, 114901.	3.0	13
21	Organization of polymer chains onto long, single-wall carbon nano-tubes: Effect of tube diameter and cooling method. Journal of Chemical Physics, 2014, 140, 024904.	3.0	19
22	Qualitative and quantitative examination of non-specific protein adsorption on filter membrane disks of a commercially available high throughput chromatography device. Journal of Membrane Science, 2014, 451, 312-318.	8.2	6
23	Properties of Adsorbed Bovine Serum Albumin and Fibrinogen on Self-Assembled Monolayers. Journal of Physical Chemistry C, 2013, 117, 6151-6160.	3.1	64
24	Refolding of biotech therapeutic proteins expressed in bacteria: review. Journal of Chemical Technology and Biotechnology, 2013, 88, 1794-1806.	3.2	47
25	Relation between the Wetting Effect and the Adsorbed Amount of Water-Soluble Polymers or Proteins at Various Interfaces. Journal of Chemical & Engineering Data, 2013, 58, 3440-3446.	1.9	35
26	The Motility of Bacteria in an Anisotropic Liquid Environment. Molecular Crystals and Liquid Crystals, 2013, 574, 33-39.	0.9	55
27	Surface chemistry at the nanometer scale influences insulin aggregation. Colloids and Surfaces B: Biointerfaces, 2012, 100, 69-76.	5.0	49
28	Effect of polymer–surfactant structure on its solution viscosity. Asia-Pacific Journal of Chemical Engineering, 2011, 6, 78-84.	1.5	16
29	Hybrid surface from self-assembled layer and its effect on protein adsorption. Applied Surface Science, 2011, 257, 4731-4737.	6.1	66
30	A Continuum Model for Polymer Adsorption at the Solidâ^'Liquid Interface. Macromolecules, 1999, 32, 863-873.	4.8	14