Tatiana Obolkina

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2311414/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Effect of Complex Additives Based on Iron, Cobalt, and Manganese Oxides and Sodium Silicate on the Sintering and Properties of Low-Temperature Ceramics 3Y–TZP–Al2O3. Russian Journal of Inorganic Chemistry, 2021, 66, 1223-1228.	1.3	3
2	Effect of Co2+ on the Phase Formation, Mechanical Properties, and In Vitro Behavior of Ceramics in the ZrO2–Al2O3 System. Doklady Chemistry, 2020, 493, 99-104.	0.9	2
3	Sintering and Properties of ZrO2–Al2O3 Composites with Additives Forming Melts Based on Sodium Silicate. Inorganic Materials: Applied Research, 2020, 11, 154-159.	0.5	0
4	Low-Temperature Liquid-Phase Sintering of Zirconia: Phase Composition and Microstructure. Doklady Chemistry, 2020, 494, 159-162.	0.9	4
5	Increasing the Sintering Rate and Strength of ZrO2–Al2O3 Ceramic Materials by Iron Oxide Additions. Inorganic Materials, 2020, 56, 182-189.	0.8	10
6	The Influence of Co Additive on the Sintering, Mechanical Properties, Cytocompatibility, and Digital Light Processing Based Stereolithography of 3Y-TZP-5Al2O3 Ceramics. Materials, 2020, 13, 2789.	2.9	11
7	Ceramic Materials in the Tricalcium Phosphate–Trimagnesium Phosphate System. Inorganic Materials, 2020, 56, 314-320.	0.8	3
8	The Influence of Manganese Oxide on the Sintering and Properties of the Eutectic Ceramics of the ZrO2–Al2O3–SiO2 System. Doklady Chemistry, 2019, 486, 160-163.	0.9	1
9	Structure and Thermal Stability of Lithium-Substituted Hydroxyapatite Ceramics. Inorganic Materials, 2019, 55, 715-723.	0.8	9
10	Effect of Sodium Silicate on the Sintering and Properties of Zirconia Ceramics. Doklady Chemistry, 2019, 488, 239-241.	0.9	2
11	Influence of the Sodium Niobate Addition on the Sintering and Properties of Zirconia Ceramics. Doklady Chemistry, 2019, 486, 141-143.	0.9	1
12	The effect of transition metal oxides on the sintering and properties of ceramics in the ZrO2-Al2O3 system. Journal of Physics: Conference Series, 2019, 1347, 012025.	0.4	1
13	Effect of Doping with Sodium and Potassium on the Phase Formation in the Synthesis of Calcium Sulfate. Doklady Chemistry, 2019, 489, 272-274.	0.9	1
14	Agglomeration and Properties of Ceramics Based on Partially Stabilized Zirconium Dioxide Containing Oxides of Aluminum and Iron. Inorganic Materials: Applied Research, 2018, 9, 121-124.	0.5	9
15	Influence of Lithium on the Structure and Phase Composition Formation in the Synthesis of Hydroxyapatite. Doklady Chemistry, 2018, 481, 177-180.	0.9	4
16	Evolution of the microstructure and phase composition of materials based on the fluorohydroxyapatite–zirconia–alumina system during sintering. Inorganic Materials, 2017, 53, 980-986.	0.8	3