Brian T Fife

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2311255/publications.pdf

Version: 2024-02-01

109264 88593 7,309 74 35 70 h-index citations g-index papers 77 77 77 11174 all docs docs citations times ranked citing authors

#	Article	IF	Citations
1	Distinct myeloid antigen-presenting cells dictate differential fates of tumor-specific CD8+ T cells in pancreatic cancer. JCI Insight, 2022, 7, .	2.3	5
2	The Role of Programmed Death-1 in Type 1 Diabetes. Current Diabetes Reports, 2021, 21, 20.	1.7	11
3	Enhanced CD4+ and CD8+ T cell infiltrate within convex hull defined pancreatic islet borders as autoimmune diabetes progresses. Scientific Reports, 2021, 11, 17142.	1.6	7
4	Type 1 diabetes pathogenesis and the role of inhibitory receptors in islet tolerance. Annals of the New York Academy of Sciences, 2020, 1461, 73-103.	1.8	15
5	Adoptive T Cell Therapy with IL-12–Preconditioned Low-Avidity T Cells Prevents Exhaustion and Results in Enhanced T Cell Activation, Enhanced Tumor Clearance, and Decreased Risk for Autoimmunity. Journal of Immunology, 2020, 205, 1449-1460.	0.4	20
6	Limited proliferation capacity of aortic intima resident macrophages requires monocyte recruitment for atherosclerotic plaque progression. Nature Immunology, 2020, 21, 1194-1204.	7.0	115
7	Development of canine PD-1/PD-L1 specific monoclonal antibodies and amplification of canine T cell function. PLoS ONE, 2020, 15, e0235518.	1.1	26
8	Repeated dermal application of the common preservative methylisothiazolinone triggers local inflammation, T cell influx, and prolonged mast cell-dependent tactile sensitivity in mice. PLoS ONE, 2020, 15, e0241218.	1.1	2
9	Title is missing!. , 2020, 15, e0241218.		O
10	Title is missing!. , 2020, 15, e0241218.		0
11	Title is missing!. , 2020, 15, e0241218.		O
12	Title is missing!. , 2020, 15, e0241218.		0
13	Programmed Death-1 Restrains the Germinal Center in Type 1 Diabetes. Journal of Immunology, 2019, 203, 844-852.	0.4	15
14	Editorial: Fresh Ideas, Foundational Experiments: Immunology and Diabetes. Frontiers in Endocrinology, 2019, 10, 315.	1.5	1
15	Long-term surviving influenza infected cells evade CD8+ T cell mediated clearance. PLoS Pathogens, 2019, 15, e1008077.	2.1	16
16	Reprogramming responsiveness to checkpoint blockade in dysfunctional CD8 T cells. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 2640-2645.	3.3	22
17	Tetrahydrocannabinol Reduces Hapten-Driven Mast Cell Accumulation and Persistent Tactile Sensitivity in Mouse Model of Allergen-Provoked Localized Vulvodynia. International Journal of Molecular Sciences, 2019, 20, 2163.	1.8	12
18	Increased \hat{I}^2 -cell proliferation before immune cell invasion prevents progression of type 1 diabetes. Nature Metabolism, 2019, 1, 509-518.	5.1	38

#	Article	IF	CITATIONS
19	TCR Affinity Biases Th Cell Differentiation by Regulating CD25, Eef1e1, and Gbp2. Journal of Immunology, 2019, 202, 2535-2545.	0.4	55
20	Interstitial Migration of CD8 $\hat{l}\pm\hat{l}^2$ T Cells in the Small Intestine Is Dynamic and Is Dictated by Environmental Cues. Cell Reports, 2019, 26, 2859-2867.e4.	2.9	19
21	T Cells in Nonlymphoid Tissues Give Rise to Lymph-Node-Resident Memory T Cells. Immunity, 2018, 48, 327-338.e5.	6.6	191
22	Neutrophils provide cellular communication between ileum and mesenteric lymph nodes at graft-versus-host disease onset. Blood, 2018, 131, 1858-1869.	0.6	94
23	Cutting Edge: Allograft Rejection Is Associated with Weak T Cell Responses to Many Different Graft Leukocyte-Derived Peptides. Journal of Immunology, 2018, 200, 477-482.	0.4	7
24	Intravital mucosal imaging of CD8+ resident memory T cells shows tissue-autonomous recall responses that amplify secondary memory. Nature Immunology, 2018, 19, 173-182.	7.0	220
25	Interferon-gamma drives programmed death-ligand 1 expression on islet \hat{l}^2 cells to limit T cell function during autoimmune diabetes. Scientific Reports, 2018, 8, 8295.	1.6	100
26	Eradication of Established Tumors by Chemically Self-Assembled Nanoring Labeled T Cells. ACS Nano, 2018, 12, 6563-6576.	7.3	24
27	The vimentin intermediate filament network restrains regulatory T cell suppression of graft-versus-host disease. Journal of Clinical Investigation, 2018, 128, 4604-4621.	3.9	32
28	Cutting Edge: Dual TCRα Expression Poses an Autoimmune Hazard by Limiting Regulatory T Cell Generation. Journal of Immunology, 2017, 199, 33-38.	0.4	20
29	Increased Effector Memory Insulin-Specific CD4+ T Cells Correlate With Insulin Autoantibodies in Patients With Recent-Onset Type 1 Diabetes. Diabetes, 2017, 66, 3051-3060.	0.3	38
30	T Cell-Mediated Beta Cell Destruction: Autoimmunity and Alloimmunity in the Context of Type 1 Diabetes. Frontiers in Endocrinology, 2017, 8, 343.	1.5	194
31	Landscape review of current HIV  kick and kill' cure research - some kicking, not enough killing. BMC Infectious Diseases, 2017, 17, 595.	1.3	60
32	T cell progenitor therapy–facilitated thymopoiesis depends upon thymic input and continued thymic microenvironment interaction. JCI Insight, 2017, 2, .	2.3	18
33	Repeated hapten exposure induces persistent tactile sensitivity in mice modeling localized provoked vulvodynia. PLoS ONE, 2017, 12, e0169672.	1.1	13
34	Efficient generation of monoclonal antibodies against peptide in the context of MHCII using magnetic enrichment. Nature Communications, 2016, 7, 11804.	5.8	26
35	Programmed Death-1 Culls Peripheral Accumulation of High-Affinity Autoreactive CD4ÂT Cells to Protect against Autoimmunity. Cell Reports, 2016, 17, 1783-1794.	2.9	35
36	Isolation of Infiltrating Leukocytes from Mouse Skin Using Enzymatic Digest and Gradient Separation. Journal of Visualized Experiments, 2016, , e53638.	0.2	28

#	Article	IF	CITATIONS
37	Most microbe-specific na \tilde{A} -ve CD4 $<$ sup $>+<$ /sup $>$ T cells produce memory cells during infection. Science, 2016, 351, 511-514.	6.0	56
38	CD4+ T cell anergy prevents autoimmunity and generates regulatory T cell precursors. Nature Immunology, 2016, 17, 304-314.	7.0	178
39	Tolerance is established in polyclonal CD4+ T cells by distinct mechanisms, according to self-peptide expression patterns. Nature Immunology, 2016, 17, 187-195.	7.0	178
40	Programmed death ligand-1 expression on donor T cells drives graft-versus-host disease lethality. Journal of Clinical Investigation, 2016, 126, 2642-2660.	3.9	81
41	PD-1 pathway-mediated regulation of islet-specific CD4+ T cell subsets in autoimmune diabetes. Immunoendocrinology (Houston, Tex), 2016, 3, .	1.0	14
42	Fractionated radiotherapy combined with PD-1 pathway blockade promotes CD8 T cell-mediated tumor clearance for the treatment of advanced malignancies. Annals of Translational Medicine, 2016, 4, 82.	0.7	6
43	T Cell Receptor Cross-Reactivity between Similar Foreign and Self Peptides Influences Naive Cell Population Size and Autoimmunity. Immunity, 2015, 42, 95-107.	6.6	144
44	T Cell Receptor Cross-Reactivity between Similar Foreign and Self Peptides Influences Naive Cell Population Size and Autoimmunity. Immunity, 2015, 42, 1212-1213.	6.6	9
45	Cutting Edge: Identification of Autoreactive CD4+ and CD8+ T Cell Subsets Resistant to PD-1 Pathway Blockade. Journal of Immunology, 2015, 194, 3551-3555.	0.4	46
46	Protein Kinase C-Theta Interacts with mTORC2 and Vimentin to Limit Regulatory T-Cell Function. Blood, 2015, 126, 849-849.	0.6	0
47	Loss of Programmed Death Ligand-1 Expression on Donor T Cells Lessens Acute Graft-Versus-Host Disease Lethality. Blood, 2015, 126, 147-147.	0.6	0
48	Cutting Edge: IL-12 and Type I IFN Differentially Program CD8 T Cells for Programmed Death 1 Re-expression Levels and Tumor Control. Journal of Immunology, 2013, 191, 1011-1015.	0.4	67
49	PD-1, but Not PD-L1, Expressed by Islet-Reactive CD4+ T Cells Suppresses Infiltration of the Pancreas During Type 1 Diabetes. Diabetes, 2013, 62, 2859-2869.	0.3	64
50	Multistage T Cell–Dendritic Cell Interactions Control Optimal CD4 T Cell Activation through the ADAP-SKAP55–Signaling Module. Journal of Immunology, 2013, 191, 2372-2383.	0.4	17
51	Cutting Edge: Type 1 Diabetes Occurs despite Robust Anergy among Endogenous Insulin-Specific CD4 T Cells in NOD Mice. Journal of Immunology, 2013, 191, 4913-4917.	0.4	39
52	Host programmed death ligand 1 is dominant over programmed death ligand 2 expression in regulating graft-versus-host disease lethality. Blood, 2013, 122, 3062-3073.	0.6	156
53	The role of the PDâ€1 pathway in autoimmunity and peripheral tolerance. Annals of the New York Academy of Sciences, 2011, 1217, 45-59.	1.8	290
54	A Protease-Dependent Mechanism for Initiating T-Dependent B Cell Responses to Large Particulate Antigens. Journal of Immunology, 2010, 184, 3609-3617.	0.4	42

#	Article	IF	Citations
55	Expression of $\hat{l}\pm v\hat{l}^2 8$ integrin on dendritic cells regulates Th17 cell development and experimental autoimmune encephalomyelitis in mice. Journal of Clinical Investigation, 2010, 120, 4436-4444.	3.9	110
56	Interactions between PD-1 and PD-L1 promote tolerance by blocking the TCR–induced stop signal. Nature Immunology, 2009, 10, 1185-1192.	7.0	659
57	Control of peripheral Tâ€cell tolerance and autoimmunity via the CTLAâ€4 and PDâ€1 pathways. Immunological Reviews, 2008, 224, 166-182.	2.8	840
58	Selective miRNA disruption in T reg cells leads to uncontrolled autoimmunity. Journal of Experimental Medicine, 2008, 205, 1983-1991.	4.2	482
59	Spontaneous Development of a Pancreatic Exocrine Disease in CD28-Deficient NOD Mice. Journal of Immunology, 2008, 180, 7793-7803.	0.4	44
60	A Link between PDL1 and T Regulatory Cells in Fetomaternal Tolerance. Journal of Immunology, 2007, 179, 5211-5219.	0.4	136
61	The Programmed Death-1 (pd-1) Pathway Regulates Peripheral T Cell Tolerance During Autoimmune Diabetes in Nonobese Diabetic (NOD) Mice. Clinical Immunology, 2007, 123, S27.	1.4	1
62	Mechanisms of PDL1-mediated regulation of autoimmune diabetes. Clinical Immunology, 2007, 125, 16-25.	1.4	111
63	Visualizing regulatory T cell control of autoimmune responses in nonobese diabetic mice. Nature Immunology, 2006, 7, 83-92.	7.0	718
64	Anti-CCL2 treatment inhibits Theiler's murine encephalomyelitis virus-induced demyelinating disease. Journal of NeuroVirology, 2006, 12, 251-261.	1.0	23
65	Insulin-induced remission in new-onset NOD mice is maintained by the PD-1–PD-L1 pathway. Journal of Experimental Medicine, 2006, 203, 2737-2747.	4.2	280
66	Inhibition of T cell activation and autoimmune diabetes using a B cell surface-linked CTLA-4 agonist. Journal of Clinical Investigation, 2006, 116, 2252-2261.	3.9	61
67	Transgenic expression of CCL2 in the central nervous system prevents experimental autoimmune encephalomyelitis. Journal of Leukocyte Biology, 2005, 77, 229-237.	1.5	37
68	Immunoneutralization of chemokines for the prevention and treatment of central nervous system autoimmune disease. Methods, 2003, 29, 362-368.	1.9	26
69	Regulation of Experimental Autoimmune Encephalomyelitis by Chemokines and Chemokine Receptors. Immunologic Research, 2002, 25, 167-176.	1.3	31
70	Selective CC chemokine receptor expression by central nervous system-infiltrating encephalitogenic T cells during experimental autoimmune encephalomyelitis. Journal of Neuroscience Research, 2001, 66, 705-714.	1.3	50
71	CXCL10 (IFN- \hat{l}^3 -Inducible Protein-10) Control of Encephalitogenic CD4+ T Cell Accumulation in the Central Nervous System During Experimental Autoimmune Encephalomyelitis. Journal of Immunology, 2001, 166, 7617-7624.	0.4	247
72	Cc Chemokine Receptor 2 Is Critical for Induction of Experimental Autoimmune Encephalomyelitis. Journal of Experimental Medicine, 2000, 192, 899-906.	4.2	496

#	Article	IF	CITATIONS
73	Chemokine Regulation of Immune-mediated Demyelinating Disease. ILAR Journal, 1999, 40, 183-189.	1.8	3
74	Central nervous system chemokine expression during Theiler's virus-induced demyelinating disease. Journal of NeuroVirology, 1999, 5, 635-642.	1.0	76