
Tooba Hallaj

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2310823/publications.pdf Version: 2024-02-01

ΤΟΟΒΑ ΗΛΙΙΑΙ

#	Article	IF	CITATIONS
1	Plasmon-enhanced fluorimetric and colorimetric dual sensor based on fluorescein/Ag nanoprisms for sensitive determination of mancozeb. Food Chemistry, 2022, 369, 130967.	8.2	9
2	A turn off–on fluorometric and paperâ€based colorimetric dualâ€node sensor for isoniazid detection. Luminescence, 2022, 37, 153-160.	2.9	11
3	Microwave-assisted facile synthesis of N, P co-doped fluorescent carbon dot probe for the determination of nifedipine. Analytical Sciences, 2022, 38, 393-399.	1.6	1
4	Morphology transition of Ag nanoprisms as a platform to design a dual sensor for NADH sensitive assay. Journal of Photochemistry and Photobiology A: Chemistry, 2022, 431, 114043.	3.9	3
5	A dual-mode colorimetric and fluorometric nanosensor for detection of uric acid based on N, P co-doped carbon dots and in-situ formation of Au/Ag core-shell nanoparticles. Microchemical Journal, 2021, 162, 105865.	4.5	21
6	Angiotensinâ€converting enzyme as a new immunologic target for the new SARSâ€CoVâ€2. Immunology and Cell Biology, 2021, 99, 192-205.	2.3	5
7	A sensitive turnâ€off–on fluorometric sensor based on S,N coâ€doped carbon dots for environmental analysis of Hg(II) ion. Luminescence, 2021, 36, 1151-1158.	2.9	16
8	Doped-carbon dots: Recent advances in their biosensing, bioimaging and therapy applications. Colloids and Surfaces B: Biointerfaces, 2021, 203, 111743.	5.0	77
9	A dual colorimetric and fluorometric sensor based on N, P-CDs and shape transformation of AgNPrs for the determination of 6-mercaptopurine. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2021, 262, 120104.	3.9	6
10	Inhibition of CD73 using folate targeted nanoparticles carrying anti-CD73 siRNA potentiates anticancer efficacy of Dinaciclib. Life Sciences, 2020, 259, 118150.	4.3	22
11	Terbium-to-quantum dot Förster resonance energy transfer for homogeneous and sensitive detection of histone methyltransferase activity. Nanoscale, 2020, 12, 13719-13730.	5.6	7
12	S, N-doped carbon quantum dots enhanced Luminol-Mn(IV) chemiluminescence reaction for detection of uric acid in biological fluids. Microchemical Journal, 2020, 156, 104841.	4.5	23
13	A chemiluminescence reaction consisting of manganese(IV), sodium sulfite, and sulfur- and nitrogen-doped carbon quantum dots, and its application for the determination of oxytetracycline. Mikrochimica Acta, 2020, 187, 191.	5.0	22
14	In situ formation of Ag/Au nanorods as a platform to design a non-aggregation colorimetric assay for uric acid detection in biological fluids. Microchemical Journal, 2020, 154, 104642.	4.5	25
15	Energy transfer with nanoparticles for in vitro diagnostics. Frontiers of Nanoscience, 2020, 16, 25-65.	0.6	1
16	A sensitive homogeneous enzyme assay for euchromatic histone-lysine-N-methyltransferase 2 (G9a) based on terbium-to-quantum dot time-resolved FRET. BioImpacts, 2020, 11, 173-179.	1.5	1
17	A sensitive plasmonic probe based on <i>in situ</i> growth of a Ag shell on a Au@N-CD nanocomposite for detection of isoniazid in environmental and biological samples. New Journal of Chemistry, 2019, 43, 5980-5986.	2.8	9
18	A sensitive colorimetric probe for detection of 6-thioguanine based on its protective effect on the silver nanoprisms. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2019, 210, 30-35.	3.9	11

Tooba Hallaj

#	Article	IF	CITATIONS
19	An enzyme-free fluorescent probe based on carbon dots – MnO2 nanosheets for determination of uric acid. Journal of Photochemistry and Photobiology A: Chemistry, 2018, 356, 603-609.	3.9	43
20	Strong enhancement of the chemiluminescence of the Cu(II)-H2O2 system on addition of carbon nitride quantum dots, and its application to the detection of H2O2 and glucose. Mikrochimica Acta, 2018, 185, 67.	5.0	27
21	An amplified chemiluminescence system based on Si-doped carbon dots for detection of catecholamines. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2018, 201, 223-228.	3.9	30
22	A highly sensitive plasmonic sensor for detection of selenium based on the shape transformation of silver nanoprisms. Sensors and Actuators B: Chemical, 2018, 273, 1307-1312.	7.8	21
23	Facile synthesis of carbon quantum dot/silver nanocomposite and its application for colorimetric detection of methimazole. Sensors and Actuators B: Chemical, 2017, 244, 425-432.	7.8	70
24	A novel chemiluminescence sensor for the determination of indomethacin based on sulfur and nitrogen coâ€doped carbon quantum dot–KMnO ₄ reaction. Luminescence, 2017, 32, 1174-1179.	2.9	31
25	Application of the chemiluminescence system composed of silicon-doped carbon dots, iron(II) and K2S2O8 to the determination of norfloxacin. Mikrochimica Acta, 2017, 184, 1587-1593.	5.0	33
26	Sulfur and nitrogen co-doped carbon quantum dots as the chemiluminescence probe for detection of Cu2+ ions. Journal of Luminescence, 2017, 182, 246-251.	3.1	93
27	Interaction of glucoseâ€derived carbon quantum dots with silver and gold nanoparticles and its application for the fluorescence detection of 6â€ŧhioguanine. Luminescence, 2017, 32, 292-297.	2.9	22
28	Green synthesis of nitrogen-doped carbon dots from lentil and its application for colorimetric determination of thioridazine hydrochloride. RSC Advances, 2016, 6, 104467-104473. mml:math	3.6	37
29	xmins:mmi="http://www.w3.org/1998/Wath/WathWL" altimg="si0001.gif" overflow="scroll"> <mml:mrow><mml:mrow><mml:mi mathvariant="normal">R</mml:mi </mml:mrow><mml:mrow><mml:mi mathvariant="normal">u</mml:mi </mml:mrow></mml:mrow> <mml:msubsup><mml:mrow><mml:mo< td=""><td></td><td></td></mml:mo<></mml:mrow></mml:msubsup>		

#	Article	IF	CITATIONS
37	Chemiluminescence of graphene quantum dots and its application to the determination of uric acid. Journal of Luminescence, 2014, 153, 73-78.	3.1	95
38	Direct chemiluminescence of carbon dots induced by potassium ferricyanide and its analytical application. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2014, 122, 715-720.	3.9	46
39	Preconcentration of trace cadmium and manganese using 1-(2-pyridylazo)-2-naphthol-modified TiO ₂ nanoparticles and their determination by flame atomic absorption spectrometry. International Journal of Environmental Analytical Chemistry, 2009, 89, 749-758.	3.3	32