Alessandro Galenda

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2310798/publications.pdf

Version: 2024-02-01

933410 713444 35 442 10 21 citations g-index h-index papers 35 35 35 664 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Large-Scale MOCVD Deposition of Nanostructured TiO2 on Stainless Steel Woven: A Systematic Investigation of Photoactivity as a Function of Film Thickness. Nanomaterials, 2022, 12, 992.	4.1	3
2	Plasma-Activated Water Triggers Rapid and Sustained Cytosolic Ca2+ Elevations in Arabidopsis thaliana. Plants, 2021, 10, 2516.	3.5	10
3	Assessment of synergistic effects of LP-MOCVD TiO2 and Ti surface finish for dental implant purposes. Applied Surface Science, 2019, 490, 568-579.	6.1	10
4	TiO2-HA bi-layer coatings for improving the bioactivity and service-life of Ti dental implants. Surface and Coatings Technology, 2019, 378, 125049.	4.8	16
5	Transglutaminase-mediated conjugation and nitride-technetium-99m labelling of a bis(thiosemicarbazone) bifunctional chelator. Journal of Inorganic Biochemistry, 2018, 183, 18-31.	3.5	10
6	Effective and Low-Cost Synthesis of Sulphur-Modified TiO2 Nanopowder with Improved Photocatalytic Performances in Water Treatment Applications. Water, Air, and Soil Pollution, 2017, 228, 1.	2.4	5
7	Hybrid Synergic Methodology to Prepare ALD Honeyâ€Comb Anatase Films. Chemical Vapor Deposition, 2015, 21, 300-306.	1.3	2
8	Effect of reaction conditions on methyl red degradation mediated by boron and nitrogen doped TiO 2. Applied Surface Science, 2014, 314, 919-930.	6.1	35
9	Steam reforming and oxidative steam reforming of methanol and ethanol: The behaviour of LaCo0.7Cu0.3O3. Applied Catalysis A: General, 2013, 453, 102-112.	4.3	54
10	La0.7Sr0.3CuO3â^Î: An Interesting Catalyst for Methanol and Ethanol Treatment. Catalysis Letters, 2013, 143, 254-259.	2.6	6
11	Mixed Magnesium and Zinc Oxide Prepared by Co-precipitation and Analyzed by XPS. Surface Science Spectra, 2012, 19, 13-22.	1.3	3
12	CuO/MgO Nanocomposites by Wet Impregnation: An XPS Study. Surface Science Spectra, 2012, 19, 23-29.	1.3	11
13	Oxygen Permeation Measurements: An Alternative Tool to Select New Intermediate Temperature Solid Oxide Fuel Cell Cathodes. Nanoscience and Nanotechnology Letters, 2011, 3, 723-730.	0.4	3
14	La0.8Sr0.2Ga0.8Fe0.2O3 $\hat{a}^{\hat{a}}$: Influence of the preparation procedure on reactivity toward methanol and ethanol. Applied Catalysis B: Environmental, 2010, 97, 307-322.	20.2	28
15	ZnO/MgO Nanocomposites by Wet Impregnation: An XPS study. Surface Science Spectra, 2010, 17, 76-86.	1.3	2
16	Diblock and Triblock Fluorinated Copolymers: An ARXPS Study. Surface Science Spectra, 2010, 17, 102-114.	1.3	2
17	Au/CeO ₂ Supported Nanocatalysts: Interaction with Methanol. Nanoscience and Nanotechnology Letters, 2010, 2, 213-219.	0.4	5
18	CuO/CeO2 Nanocomposites: An XPS Study. Surface Science Spectra, 2009, 16, 13-26.	1.3	7

#	Article	lF	CITATIONS
19	Ag/CeO2 Nanocomposites Obtained by Deposition-Precipitation, Studied by XPS. Surface Science Spectra, 2009, 16, 27-35.	1.3	1
20	Influence of Sr and Fe Dopants on the Surface Properties of LaGaO3. Surface Science Spectra, 2009, 16, 95-110.	1.3	0
21	LaMnO3: Influence of the Addition of Ba and Sr. Surface Science Spectra, 2009, 16, 83-94.	1.3	3
22	La2Cu0.8Co0.2O4+δ by Pechini Method. Surface Science Spectra, 2009, 16, 75-82.	1.3	3
23	La0.6Sr0.4Fe0.6Co0.2Cu0.2O3-Î Powders by XPS. Surface Science Spectra, 2009, 16, 58-66.	1.3	0
24	Au/CeO2 Powders: Influence of the Preparation Procedure, Studied by XPS. Surface Science Spectra, 2009, 16, 45-57.	1.3	0
25	CuOx/CeO2 Nanocomposites Prepared by Deposition-Precipitation: An XPS Study. Surface Science Spectra, 2009, 16, 36-44.	1.3	O
26	Silica–zirconia mixed oxide samples by an hybrid materials based innovative preparation procedure: Influence of preparation procedure and composition on active sites. Journal of Non-Crystalline Solids, 2009, 355, 481-487.	3.1	6
27	PrMnO3 Prepared by the Citrate Gel Method, Studied by XPS. Surface Science Spectra, 2009, 16, 67-74.	1.3	13
28	LSCF and Fe2O3/LSCF powders: Interaction with methanol. Journal of Molecular Catalysis A, 2008, 282, 52-61.	4.8	9
29	La _{0.6} Sr _{0.4} Co _{1â°'<i>y</i>} Fe _{<i>y</i>} O _{3â°'Î} Perovskites: Influence of the Co/Fe Atomic Ratio on Properties and Catalytic Activity toward Alcohol Steam-Reforming. Chemistry of Materials, 2008, 20, 2314-2327.	6.7	117
30	From La2O3 To LaCoO3: XPS Analysis. Surface Science Spectra, 2008, 15, 1-13.	1.3	22
31	CuO/La0.6Sr0.4Co0.2Fe0.8O3-δPowder by XPS. Surface Science Spectra, 2008, 15, 14-22.	1.3	1
32	La0.6Sr0.4Co1-yFeyO3-δPowders Studied by X-ray Photoelectron Spectroscopy. Surface Science Spectra, 2008, 15, 41-58.	1.3	0
33	Effect of the Preparation Procedure on the Surface Properties of Nanosized Ceria Powders. Surface Science Spectra, 2007, 14, 8-18.	1.3	0
34	LaSrCoFeO and Fe2O3/LaSrCoFeO Powders:Â Synthesis and Characterization. Chemistry of Materials, 2007, 19, 2796-2808.	6.7	49
35	La0.6Sr0.4Co0.8Fe0.2O3-δand Fe2O3/La0.6Sr0.4Co0.8Fe0.2O3-δPowders: XPS Characterization. Surface Science Spectra, 2006, 13, 31-47.	1.3	6