Alex A Freitas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2310764/publications.pdf

Version: 2024-02-01

66911 81900 7,588 181 39 78 citations h-index g-index papers 192 192 192 5993 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Machine learning-based predictions of dietary restriction associations across ageing-related genes. BMC Bioinformatics, 2022, 23, 10.	2.6	7
2	Nested trees for longitudinal classification. , 2022, , .		O
3	A Novel Feature Selection Method for Uncertain Features: An Application to the Prediction of Pro-/Anti-Longevity Genes. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2021, 18, 2230-2238.	3.0	10
4	Ageing transcriptome meta-analysis reveals similarities and differences between key mammalian tissues. Aging, 2021, 13, 3313-3341.	3.1	40
5	A data-driven missing value imputation approach for longitudinal datasets. Artificial Intelligence Review, 2021, 54, 6277-6307.	15.7	10
6	Constructed Temporal Features for Longitudinal Classification of Human Ageing Data., 2021,,.		1
7	An Ensemble of Naive Bayes Classifiers for Uncertain Categorical Data., 2021,,.		4
8	Comparing enrichment analysis and machine learning for identifying gene properties that discriminate between gene classes. Briefings in Bioinformatics, 2020, 21, 803-814.	6.5	15
9	An evolutionary algorithm for automated machine learning focusing on classifier ensembles: An improved algorithm and extended results. Theoretical Computer Science, 2020, 805, 1-18.	0.9	5
10	Using deep learning to associate human genes with age-related diseases. Bioinformatics, 2020, 36, 2202-2208.	4.1	11
11	Prioritizing positive feature values: a new hierarchical feature selection method. Applied Intelligence, 2020, 50, 4412-4433.	5.3	4
12	Stochastic local search and parameters recommendation: a case study on flowshop problems. International Transactions in Operational Research, 2020, , .	2.7	2
13	Investigating the role of Simpson's paradox in the analysis of top-ranked features in high-dimensional bioinformatics datasets. Briefings in Bioinformatics, 2020, 21, 421-428.	6.5	8
14	A robust experimental evaluation of automated multi-label classification methods. , 2020, , .		5
15	A New Random Forest Method for Longitudinal Data Classification Using a Lexicographic Bi-Objective Approach. , 2020, , .		3
16	An Evolutionary Algorithm for Learning Interpretable Ensembles of Classifiers. Lecture Notes in Computer Science, 2020, , 18-33.	1.3	2
17	ls <i>p</i> -value 0.05 enough? <i>A study on the statistical evaluation of classifiers</i> . Knowledge Engineering Review, 2020, 36, .	2.6	3
18	Stochastic model genetic programming: Deriving pricing equations for rainfall weather derivatives. Swarm and Evolutionary Computation, 2019, 46, 184-200.	8.1	10

#	Article	IF	Citations
19	The CAFA challenge reports improved protein function prediction and new functional annotations for hundreds of genes through experimental screens. Genome Biology, 2019, 20, 244.	8.8	261
20	A new approach for interpreting Random Forest models and its application to the biology of ageing. Bioinformatics, 2018, 34, 2449-2456.	4.1	43
21	An empirical evaluation of hierarchical feature selection methods for classification in bioinformatics datasets with gene ontology-based features. Artificial Intelligence Review, 2018, 50, 201-240.	15.7	24
22	Multi-objective genetic algorithms in the study of the genetic code's adaptability. Information Sciences, 2018, 425, 48-61.	6.9	21
23	A Novel Evolutionary Algorithm for Automated Machine Learning Focusing on Classifier Ensembles. , 2018, , .		9
24	A Survey of Genetic Algorithms for Multi-Label Classification. , 2018, , .		8
25	Automated Selection and Configuration of Multi-Label Classification Algorithms with Grammar-Based Genetic Programming. Lecture Notes in Computer Science, 2018, , 308-320.	1.3	14
26	Decomposition genetic programming: An extensive evaluation on rainfall prediction in the context of weather derivatives. Applied Soft Computing Journal, 2018, 70, 208-224.	7.2	22
27	A Novel Genetic Algorithm for Feature Selection in Hierarchical Feature Spaces. , 2018, , 738-746.		11
28	A review of supervised machine learning applied to ageing research. Biogerontology, 2017, 18, 171-188.	3.9	101
29	An extensive evaluation of seven machine learning methods for rainfall prediction in weather derivatives. Expert Systems With Applications, 2017, 85, 169-181.	7.6	132
30	Instance-based classification with Ant Colony Optimization. Intelligent Data Analysis, 2017, 21, 913-944.	0.9	10
31	Feature Selection for the Classification of Longitudinal Human Ageing Data. , 2017, , .		6
32	Machine learning for predicting lifespan-extending chemical compounds. Aging, 2017, 9, 1721-1737.	3.1	34
33	A novel applicability domain technique for mapping predictive reliability across the chemical space of a QSAR: reliability-density neighbourhood. Journal of Cheminformatics, 2016, 8, .	6.1	38
34	Simultaneous Prediction of four ATPâ€binding Cassette Transporters' Substrates Using Multiâ€label QSAR. Molecular Informatics, 2016, 35, 514-528.	2.5	7
35	Systematic analysis of the gerontome reveals links between aging and age-related diseases. Human Molecular Genetics, 2016, 25, ddw307.	2.9	74
36	New KEGG pathway-based interpretable features for classifying ageing-related mouse proteins. Bioinformatics, 2016, 32, 2988-2995.	4.1	11

#	Article	IF	Citations
37	An Extensive Empirical Comparison of Probabilistic Hierarchical Classifiers in Datasets of Ageing-Related Genes. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2016, 13, 1045-1058.	3.0	15
38	Improving the Interpretability of Classification Rules Discovered by an Ant Colony Algorithm: Extended Results. Evolutionary Computation, 2016, 24, 385-409.	3.0	16
39	Two methods for constructing a gene ontology-based feature network for a Bayesian network classifier and applications to datasets of aging-related genes. , 2015, , .		13
40	A Novel Extended Hierarchical Dependence Network Method Based on Non-hierarchical Predictive Classes and Applications to Ageing-Related Data. , 2015 , , .		1
41	Predicting volume of distribution with decision tree-based regression methods using predicted tissue:plasma partition coefficients. Journal of Cheminformatics, 2015, 7, 6.	6.1	21
42	An Extensive Evaluation of Decision Tree–Based Hierarchical Multilabel Classification Methods and Performance Measures. Computational Intelligence, 2015, 31, 1-46.	3.2	21
43	Comparing Multilabel Classification Methods for Provisional Biopharmaceutics Class Prediction. Molecular Pharmaceutics, 2015, 12, 87-102.	4.6	13
44	Ant colony algorithms for constructing Bayesian multi-net classifiers. Intelligent Data Analysis, 2015, 19, 233-257.	0.9	21
45	A Lexicographic Multi-Objective Genetic Algorithm for Multi-Label Correlation Based Feature Selection. , 2015, , .		17
46	Simpler is Better., 2015,,.		16
47	Predicting the Pro-Longevity or Anti-Longevity Effect of Model Organism Genes with New Hierarchical Feature Selection Methods. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2015, 12, 262-275.	3.0	34
48	Decision trees to characterise the roles of permeability and solubility on the prediction of oral absorption. European Journal of Medicinal Chemistry, 2015, 90, 751-765.	5.5	75
49	Decision-Tree Induction. SpringerBriefs in Computer Science, 2015, , 7-45.	0.2	5
50	Evolutionary Algorithms and Hyper-Heuristics. SpringerBriefs in Computer Science, 2015, , 47-58.	0.2	1
51	An Efficient Algorithm for Hierarchical Classification of Protein and Gene Functions. , 2014, , .		2
52	Extending the ABC-Miner Bayesian Classification Algorithm. Studies in Computational Intelligence, 2014, , 1-12.	0.9	9
53	Dependency network methods for Hierarchical Multi-label Classification of gene functions. , 2014, , .		3
54	Evolving relational hierarchical classification rules for predicting gene ontology-based protein functions. , 2014, , .		5

#	Article	IF	Citations
55	Evolving decision trees with beam search-based initialization and lexicographic multi-objective evaluation. Information Sciences, 2014, 258, 160-181.	6.9	18
56	Contrasting meta-learning and hyper-heuristic research: the role of evolutionary algorithms. Genetic Programming and Evolvable Machines, 2014, 15, 3-35.	2.2	86
57	Extending multi-label feature selection with KEGG pathway information for microarray data analysis. , 2014, , .		8
58	ABC-Miner+: constructing Markov blanket classifiers with ant colony algorithms. Memetic Computing, 2014, 6, 183-206.	4.0	9
59	Evolutionary Design of Decision-Tree Algorithms Tailored to Microarray Gene Expression Data Sets. IEEE Transactions on Evolutionary Computation, 2014, 18, 873-892.	10.0	55
60	Classification with cluster-based Bayesian multi-nets using Ant Colony Optimisation. Swarm and Evolutionary Computation, 2014, 18, 54-70.	8.1	15
61	Comprehensible classification models. SIGKDD Explorations: Newsletter of the Special Interest Group (SIG) on Knowledge Discovery & Data Mining, 2014, 15, 1-10.	4.0	394
62	Distinct Chains for Different Instances: An Effective Strategy for Multi-label Classifier Chains. Lecture Notes in Computer Science, 2014, , 453-468.	1.3	12
63	A grammatical evolution algorithm for generation of Hierarchical Multi-Label Classification rules. , 2013, , .		6
64	Learning Bayesian network classifiers using ant colony optimization. Swarm Intelligence, 2013, 7, 229-254.	2.2	30
65	Pre-processing Feature Selection for Improved C&RT Models for Oral Absorption. Journal of Chemical Information and Modeling, 2013, 53, 2730-2742.	5.4	21
66	Utilizing multiple pheromones in an ant-based algorithm for continuous-attribute classification rule discovery. Applied Soft Computing Journal, 2013, 13, 667-675.	7.2	41
67	Coping with Unbalanced Class Data Sets in Oral Absorption Models. Journal of Chemical Information and Modeling, 2013, 53, 461-474.	5.4	26
68	Clustering-based Bayesian Multi-net Classifier construction with Ant Colony Optimization. , 2013, , .		10
69	Improving the interpretability of classification rules discovered by an ant colony algorithm. , 2013, , .		23
70	Prediction of the pro-longevity or anti-longevity effect of Caenorhabditis Elegans genes based on Bayesian classification methods., 2013,,.		12
71	A New Sequential Covering Strategy for Inducing Classification Rules With Ant Colony Algorithms. IEEE Transactions on Evolutionary Computation, 2013, 17, 64-76.	10.0	80
72	Two Extensions to Multi-label Correlation-Based Feature Selection: A Case Study in Bioinformatics. , 2013, , .		18

#	Article	IF	Citations
73	Investigating the impact of various classification quality measures in the predictive accuracy of ABC-Miner. , $2013, \ldots$		1
74	Evaluating the use of different measure functions in the predictive quality of ABC-miner. , 2013, , .		0
75	Automatic Design of Decision-Tree Algorithms with Evolutionary Algorithms. Evolutionary Computation, 2013, 21, 659-684.	3.0	35
76	A Genetic Algorithm for Optimizing the Label Ordering in Multi-label Classifier Chains. , 2013, , .		52
77	ACO-Based Bayesian Network Ensembles for the Hierarchical Classification of Ageing-Related Proteins. Lecture Notes in Computer Science, 2013, , 80-91.	1.3	4
78	Probabilistic Clustering for Hierarchical Multi-Label Classification of Protein Functions. Lecture Notes in Computer Science, 2013, , 385-400.	1.3	9
79	Inducing decision trees with an ant colony optimization algorithm. Applied Soft Computing Journal, 2012, 12, 3615-3626.	7.2	105
80	The impact of training set data distributions for modelling of passive intestinal absorption. International Journal of Pharmaceutics, 2012, 436, 711-720.	5.2	10
81	A Survey of Evolutionary Algorithms for Decision-Tree Induction. IEEE Transactions on Systems, Man and Cybernetics, Part C: Applications and Reviews, 2012, 42, 291-312.	2.9	242
82	ABC-Miner: An Ant-Based Bayesian Classification Algorithm. Lecture Notes in Computer Science, 2012, , 13-24.	1.3	8
83	Improving the cAnt-MinerPB Classification Algorithm. Lecture Notes in Computer Science, 2012, , 73-84.	1.3	9
84	A Beam Search Based Decision Tree Induction Algorithm. , 2012, , 357-370.		3
85	Multiple pheromone types and other extensions to the Ant-Miner classification rule discovery algorithm. Swarm Intelligence, 2011, 5, 149-182.	2.2	49
86	Selecting different protein representations and classification algorithms in hierarchical protein function prediction. Intelligent Data Analysis, 2011, 15, 979-999.	0.9	18
87	Adapting non-hierarchical multilabel classification methods for hierarchical multilabel classification. Intelligent Data Analysis, 2011, 15, 861-887.	0.9	14
88	Lazy attribute selection: Choosing attributes at classification time. Intelligent Data Analysis, 2011, 15, 715-732.	0.9	12
89	A review and appraisal of the DNA damage theory of ageing. Mutation Research - Reviews in Mutation Research, 2011, 728, 12-22.	5.5	177
90	A survey of hierarchical classification across different application domains. Data Mining and Knowledge Discovery, 2011, 22, 31-72.	3.7	693

#	Article	IF	Citations
91	A genetic programming method for protein motif discovery and protein classification. Soft Computing, 2011, 15, 1897-1908.	3.6	1
92	A data mining approach for classifying DNA repair genes into ageing-related or non-ageing-related. BMC Genomics, 2011, 12, 27.	2.8	52
93	Present Perspectives on the Automated Classification of the G-Protein Coupled Receptors (GPCRs) at the Protein Sequence Level. Current Topics in Medicinal Chemistry, 2011, 11, 1994-2009.	2.1	8
94	A hierarchical approach to represent relational data applied to clustering tasks. , 2011, , .		2
95	Hierarchical classification of G-Protein-Coupled Receptors with data-driven selection of attributes and classifiers. International Journal of Data Mining and Bioinformatics, 2010, 4, 191.	0.1	30
96	A hierarchical multi-label classification ant colony algorithm for protein function prediction. Memetic Computing, 2010, 2, 165-181.	4.0	43
97	Automating the Design of Data Mining Algorithms. Natural Computing Series, 2010, , .	2.2	23
98	Web log data clustering for a multi-agent recommendation system. , 2010, , .		2
99	Evolutionary model tree induction., 2010,,.		9
100	On the Importance of Comprehensible Classification Models for Protein Function Prediction. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2010, 7, 172-182.	3.0	80
101	Evolutionary Algorithms. Natural Computing Series, 2010, , 47-84.	2.2	1
102	Computational Results on the Automatic Design of Full Rule Induction Algorithms. Natural Computing Series, 2010, , 137-175.	2.2	0
103	Genetic Programming for Classification and Algorithm Design. Natural Computing Series, 2010, , 85-108.	2.2	0
104	Automating the Design of Rule Induction Algorithms. Natural Computing Series, 2010, , 109-135.	2.2	3
105	Creating Rule Ensembles from Automatically-Evolved Rule Induction Algorithms. Studies in Computational Intelligence, 2010, , 257-273.	0.9	0
106	Novel top-down approaches for hierarchical classification and their application to automatic music genre classification. , $2009, , .$		21
107	MAHATMA: A Genetic Programming-Based Tool for Protein Classification. , 2009, , .		1
108	Handling continuous attributes in Ant Colony Classification algorithms. , 2009, , .		46

#	Article	IF	CITATIONS
109	Automatically evolving rule induction algorithms tailored to the prediction of postsynaptic activity in proteins. Intelligent Data Analysis, 2009, 13, 243-259.	0.9	6
110	Evolving rule induction algorithms with multi-objective grammar-based genetic programming. Knowledge and Information Systems, 2009, 19, 283-309.	3.2	47
111	Hierarchical classification of protein function with ensembles of rules and particle swarm optimisation. Soft Computing, 2009, 13, 259-272.	3.6	28
112	A Survey of Evolutionary Algorithms for Clustering. IEEE Transactions on Systems, Man and Cybernetics, Part C: Applications and Reviews, 2009, 39, 133-155.	2.9	581
113	A Tutorial on Multi-label Classification Techniques. Studies in Computational Intelligence, 2009, , 177-195.	0.9	62
114	A Global-Model Naive Bayes Approach to the Hierarchical Prediction of Protein Functions., 2009,,.		35
115	A Hierarchical Classification Ant Colony Algorithm for Predicting Gene Ontology Terms. Lecture Notes in Computer Science, 2009, , 68-79.	1.3	20
116	Lexicographic multi-objective evolutionary induction of decision trees. International Journal of Bio-Inspired Computation, 2009, 1, 105.	0.9	32
117	A Review of Evolutionary Algorithms for Data Mining. , 2009, , 371-400.		9
118	A Hybrid Rule-Induction/Likelihood-Ratio Based Approach for Predicting Protein-Protein Interactions. Intelligent Systems Reference Library, 2009, , 623-637.	1.2	3
119	Genetic Programming for Automatically Constructing Data Mining Algorithms. , 2009, , 932-936.		1
120	Ant Colony Algorithms for Data Classification. , 2009, , 154-159.		6
121	An Empirical Evaluation of the Effectiveness of Different Types of Predictor Attributes in Protein Function Prediction. Studies in Computational Intelligence, 2009, , 339-357.	0.9	0
122	AISIID: An artificial immune system for interesting information discovery on the web. Applied Soft Computing Journal, 2008, 8, 885-905.	7.2	19
123	GPCRTree: online hierarchical classification of GPCR function. BMC Research Notes, 2008, 1, 67.	1.4	33
124	Discovering New Rule Induction Algorithms with Grammar-based Genetic Programming., 2008,, 133-152.		11
125	A Hybrid PSO/ACO Algorithm for Discovering Classification Rules in Data Mining. Journal of Artificial Evolution and Applications, 2008, 2008, 1-11.	1.8	81
126	A Review of evolutionary Algorithms for Data Mining. , 2008, , 79-111.		40

#	Article	IF	CITATIONS
127	Alignment-Independent Techniques for Protein Classification. Current Proteomics, 2008, 5, 217-223.	0.3	12
128	Message-passing algorithms for the prediction of protein domain interactions from protein–protein interaction data. Bioinformatics, 2008, 24, 2064-2070.	4.1	13
129	Optimizing amino acid groupings for GPCR classification. Bioinformatics, 2008, 24, 1980-1986.	4.1	70
130	Improving the Performance of Hierarchical Classification with Swarm Intelligence., 2008, , 48-60.		13
131	Multi-label Hierarchical Classification of Protein Functions with Artificial Immune Systems. Lecture Notes in Computer Science, 2008, , 1 -12.	1.3	19
132	Top-Down Hierarchical Ensembles of Classifiers for Predicting G-Protein-Coupled-Receptor Functions. Lecture Notes in Computer Science, 2008, , 35-46.	1.3	16
133	cAnt-Miner: An Ant Colony Classification Algorithm to Cope with Continuous Attributes. Lecture Notes in Computer Science, 2008, , 48-59.	1.3	92
134	Particle Swarm for Attribute Selection in Bayesian Classification: An Application to Protein Function Prediction. Journal of Artificial Evolution and Applications, 2008, 2008, 1-12.	1.8	13
135	Artificial Immune Systems in Bioinformatics. Studies in Computational Intelligence, 2008, , 271-295.	0.9	2
136	Protein Interaction Inference Using Particle Swarm Optimization Algorithm., 2008,, 61-70.		2
137	WAIRS: improving classification accuracy by weighting attributes in the AIRS classifier. , 2007, , .		13
138	Particle swarm and bayesian networks applied to attribute selection for protein functional classification. , 2007, , .		11
139	A hybrid PSO/ACO algorithm for classification. , 2007, , .		36
140	Revisiting the Foundations of Artificial Immune Systems for Data Mining. IEEE Transactions on Evolutionary Computation, 2007, 11, 521-540.	10.0	116
141	EDACluster: an Evolutionary Density and Grid-Based Clustering Algorithm. , 2007, , .		2
142	On the hierarchical classification of G protein-coupled receptors. Bioinformatics, 2007, 23, 3113-3118.	4.1	87
143	Proteomic applications of automated GPCR classification. Proteomics, 2007, 7, 2800-2814.	2.2	40
144	Estimating Photometric Redshifts Using Genetic Algorithms. , 2007, , 75-87.		4

#	Article	IF	CITATIONS
145	Comparing Several Approaches for Hierarchical Classification of Proteins with Decision Trees. , 2007, , 126-137.		26
146	A Tutorial on Hierarchical Classification with Applications in Bioinformatics. , 2007, , 175-208.		43
147	Improving the Interpretability of Classification Rules in Sparse Bioinformatics Datasets. , 2007, , 377-381.		2
148	A New Classification-Rule Pruning Procedure for an Ant Colony Algorithm. Lecture Notes in Computer Science, 2006, , 25-36.	1.3	25
149	A new version of the ant-miner algorithm discovering unordered rule sets. , 2006, , .		43
150	A new discrete particle swarm algorithm applied to attribute selection in a bioinformatics data set. , 2006, , .		50
151	A new ant colony algorithm for multi-label classification with applications in bioinfomatics. , 2006, , .		41
152	Automatically Evolving Rule Induction Algorithms. Lecture Notes in Computer Science, 2006, , 341-352.	1.3	21
153	Discovering Knowledge Nuggets with a Genetic Algorithm. , 2006, , 395-432.		0
154	Evaluating Six Candidate Solutions for the Small-Disjunct Problem and Choosing the Best Solution via Meta-Learning. Artificial Intelligence Review, 2005, 24, 61-98.	15.7	5
155	Evolutionary Algorithms for Data Mining. , 2005, , 435-467.		17
156	Predicting post-synaptic activity in proteins with data mining. Bioinformatics, 2005, 21, ii19-ii25.	4.1	15
157	Classification-Rule Discovery with an Ant Colony Algorithm. , 2005, , 420-424.		5
158	An Evolutionary Approach for Motif Discovery and Transmembrane Protein Classification. Lecture Notes in Computer Science, 2005, , 105-114.	1.3	2
159	A constrained-syntax genetic programming system for discovering classification rules: application to medical data sets. Artificial Intelligence in Medicine, 2004, 30, 27-48.	6.5	95
160	A hybrid decision tree/genetic algorithm method for data mining. Information Sciences, 2004, 163, 13-35.	6.9	130
161	Discovering interesting knowledge from a science and technology database with a genetic algorithm. Applied Soft Computing Journal, 2004, 4, 121-137.	7.2	31
162	A critical review of multi-objective optimization in data mining. SIGKDD Explorations: Newsletter of the Special Interest Group (SIG) on Knowledge Discovery & Data Mining, 2004, 6, 77-86.	4.0	146

#	Article	IF	Citations
163	Automatic Text Summarization with Genetic Algorithm-Based Attribute Selection. Lecture Notes in Computer Science, 2004, , 305-314.	1.3	24
164	Web Page Classification with an Ant Colony Algorithm. Lecture Notes in Computer Science, 2004, , 1092-1102.	1.3	36
165	An Artificial Immune System for Fuzzy-Rule Induction in Data Mining. Lecture Notes in Computer Science, 2004, , 1011-1020.	1.3	41
166	MULTI-OBJECTIVE ALGORITHMS FOR ATTRIBUTE SELECTION IN DATA MINING. Advances in Natural Computation, 2004, , 603-626.	0.1	14
167	A Survey of Evolutionary Algorithms for Data Mining and Knowledge Discovery. Natural Computing Series, 2003, , 819-845.	2.2	201
168	Genetic Programming for Attribute Construction in Data Mining. Lecture Notes in Computer Science, 2003, , 384-393.	1.3	60
169	An Innovative Application of a Constrained-Syntax Genetic Programming System to the Problem of Predicting Survival of Patients. Lecture Notes in Computer Science, 2003, , 11-21.	1.3	6
170	Data Mining and Knowledge Discovery with Evolutionary Algorithms. Natural Computing Series, 2002,	2.2	450
171	Attribute Selection with a Multi-objective Genetic Algorithm. Lecture Notes in Computer Science, 2002, , 280-290.	1.3	36
172	A genetic-algorithm for discovering small-disjunct rules in data mining. Applied Soft Computing Journal, 2002, 2, 75-88.	7.2	43
173	An Ant Colony Algorithm for Classification Rule Discovery. , 2002, , 191-208.		76
174	Genetic Programming for Rule Discovery. Natural Computing Series, 2002, , 139-163.	2.2	0
175	Mining Comprehensible Rules from Data with an Ant Colony Algorithm. Lecture Notes in Computer Science, 2002, , 259-269.	1.3	1
176	Understanding the Crucial Role of Attribute Interaction in Data Mining. Artificial Intelligence Review, 2001, 16, 177-199.	15.7	116
177	Discovering Fuzzy Classification Rules with Genetic Programming and Co-evolution. Lecture Notes in Computer Science, 2001, , 314-325.	1.3	66
178	Understanding the crucial differences between classification and discovery of association rules. SIGKDD Explorations: Newsletter of the Special Interest Group (SIG) on Knowledge Discovery & Data Mining, 2000, 2, 65-69.	4.0	81
179	A Genetic Algorithm-Based Solution for the Problem of Small Disjuncts. Lecture Notes in Computer Science, 2000, , 345-352.	1.3	15
180	A Fuzzy Beam-Search Rule Induction Algorithm. Lecture Notes in Computer Science, 1999, , 341-347.	1.3	9

ALEX A FREITAS

#	Article	IF	CITATIONS
181	On objective measures of rule surprisingness. Lecture Notes in Computer Science, 1998, , 1-9.	1.3	66