Saif A Haque

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/231038/publications.pdf

Version: 2024-02-01

		31902	2	21474
119	13,312	53		114
papers	citations	h-index		g-index
121	121	121		13317
all docs	docs citations	times ranked		citing authors

#	Article	IF	Citations
1	Overcoming Nanoscale Inhomogeneities in Thin-Film Perovskites via Exceptional Post-annealing Grain Growth for Enhanced Photodetection. Nano Letters, 2022, 22, 979-988.	4.5	9
2	Additiveâ€Free, Lowâ€Temperature Crystallization of Stable αâ€FAPbI ₃ Perovskite. Advanced Materials, 2022, 34, e2107850.	11.1	71
3	High Power Irradiance Dependence of Charge Species Dynamics in Hybrid Perovskites and Kinetic Evidence for Transient Vibrational Stark Effect in Formamidinium. Nanomaterials, 2022, 12, 1616.	1.9	O
4	Asymmetric charge carrier transfer and transport in planar lead halide perovskite solar cells. Cell Reports Physical Science, 2022, 3, 100890.	2.8	9
5	A Multifaceted Ferrocene Interlayer for Highly Stable and Efficient Lithium Doped Spiroâ€OMeTADâ€based Perovskite Solar Cells. Advanced Energy Materials, 2022, 12, .	10.2	32
6	Bioinspired scaffolds that sequester lead ions in physically damaged high efficiency perovskite solar cells. Chemical Communications, 2021, 57, 994-997.	2.2	24
7	Lessons learned from spiro-OMeTAD and PTAA in perovskite solar cells. Energy and Environmental Science, 2021, 14, 5161-5190.	15.6	255
8	Ultrathin polymethylmethacrylate interlayers boost performance of hybrid tin halide perovskite solar cells. Chemical Communications, 2021, 57, 5047-5050.	2.2	26
9	2D Phase Purity Determines Charge-Transfer Yield at 3D/2D Lead Halide Perovskite Heterojunctions. Journal of Physical Chemistry Letters, 2021, 12, 3312-3320.	2.1	13
10	Structural, Electronic, and Optical Properties of the Vacancy-Ordered Bismuth–Antimony Perovskites (CH3NH3)3(Bi1–xSbx)2I9. Journal of Physical Chemistry C, 2021, 125, 8938-8946.	1.5	5
11	Degradation mechanism of hybrid tin-based perovskite solar cells and the critical role of tin (IV) iodide. Nature Communications, 2021, 12, 2853.	5.8	236
12	Lewis Base Passivation Mediates Charge Transfer at Perovskite Heterojunctions. Journal of the American Chemical Society, 2021, 143, 12230-12243.	6.6	36
13	Phosphorene Nanoribbon-Augmented Optoelectronics for Enhanced Hole Extraction. Journal of the American Chemical Society, 2021, 143, 21549-21559.	6.6	44
14	Stability of Lead and Tin Halide Perovskites: The Link between Defects and Degradation. Journal of Physical Chemistry Letters, 2020, 11, 574-585.	2.1	84
15	Understanding the Enhanced Stability of Bromide Substitution in Lead Iodide Perovskites. Chemistry of Materials, 2020, 32, 400-409.	3.2	53
16	Improved Charge Separation and Photovoltaic Performance of Bil ₃ Absorber Layers by Use of an In Situ Formed BiSI Interlayer. ACS Applied Energy Materials, 2019, 2, 7056-7061.	2.5	20
17	Ligand-free preparation of polymer/CuInS ₂ nanocrystal films and the influence of 1,3-benzenedithiol on their photovoltaic performance and charge recombination properties. Journal of Materials Chemistry C, 2019, 7, 943-952.	2.7	8
18	Evidence for surface defect passivation as the origin of the remarkable photostability of unencapsulated perovskite solar cells employing aminovaleric acid as a processing additive. Journal of Materials Chemistry A, 2019, 7, 3006-3011.	5.2	70

#	Article	IF	Citations
19	Toward Improved Environmental Stability of Polymer:Fullerene and Polymer:Nonfullerene Organic Solar Cells: A Common Energetic Origin of Light- and Oxygen-Induced Degradation. ACS Energy Letters, 2019, 4, 846-852.	8.8	71
20	Surface Passivation of Perovskite Films via Iodide Salt Coatings for Enhanced Stability of Organic Lead Halide Perovskite Solar Cells. Solar Rrl, 2019, 3, 1800282.	3.1	34
21	Charge Transport in Spiro-OMeTAD Investigated through Space-Charge-Limited Current Measurements. Physical Review Applied, 2018, 9, .	1.5	42
22	Exploring the validity and limitations of the Mott–Gurney law for charge-carrier mobility determination of semiconducting thin-films. Journal of Physics Condensed Matter, 2018, 30, 105901.	0.7	102
23	Effect of Interfacial Energetics on Charge Transfer from Lead Halide Perovskite to Organic Hole Conductors. Journal of Physical Chemistry C, 2018, 122, 1326-1332.	1.5	32
24	Effect of alkyl chain length on the properties of triphenylamine-based hole transport materials and their performance in perovskite solar cells. Physical Chemistry Chemical Physics, 2018, 20, 1252-1260.	1.3	25
25	Polymeric hole-transport materials with side-chain redox-active groups for perovskite solar cells with good reproducibility. Physical Chemistry Chemical Physics, 2018, 20, 25738-25745.	1.3	4
26	Decoupling Structure and Composition of CH ₃ Br _{<i>x</i>} Films Prepared by Combined One-Step and Two-Step Deposition. ACS Applied Energy Materials, 2018, 1, 5567-5578.	2.5	9
27	Efficient Hybrid Solar Cells Based on Solution Processed Mesoporous TiO ₂ /Tin(II) Sulfide Heterojunctions. ACS Applied Energy Materials, 2018, 1, 3042-3047.	2.5	26
28	CH ₃ NH ₃ PbI ₃ films prepared by combining 1- and 2-step deposition: how crystal growth conditions affect properties. Physical Chemistry Chemical Physics, 2017, 19, 7204-7214.	1.3	16
29	Oxadiazole-carbazole polymer (POC)-Ir(ppy) 3 tunable emitting composites. Optical Materials, 2017, 66, 166-170.	1.7	5
30	Fast oxygen diffusion and iodide defects mediate oxygen-induced degradation of perovskite solar cells. Nature Communications, 2017, 8, 15218.	5.8	917
31	Tuning CH ₃ NH ₃ Pb(I _{1â^'x} Br _x) ₃ perovskite oxygen stability in thin films and solar cells. Journal of Materials Chemistry A, 2017, 5, 9553-9560.	5. 2	72
32	Insights into the increased degradation rate of CH ₃ NH ₃ PbI ₃ solar cells in combined water and O ₂ environments. Journal of Materials Chemistry A, 2017, 5, 25469-25475.	5.2	52
33	Two-Dimensional Organic Tin Halide Perovskites with Tunable Visible Emission and Their Use in Light-Emitting Devices. ACS Energy Letters, 2017, 2, 1662-1668.	8.8	204
34	Reducing hole transporter use and increasing perovskite solar cell stability with dual-role polystyrene microgel particles. Nanoscale, 2017, 9, 10126-10137.	2.8	19
35	Evidence for photo-induced charge separation between dye molecules adsorbed to aluminium oxide surfaces. Scientific Reports, 2016, 6, 21276.	1.6	13
36	Light and oxygen induced degradation limits the operational stability of methylammonium lead triiodide perovskite solar cells. Energy and Environmental Science, 2016, 9, 1655-1660.	15.6	783

#	Article	IF	CITATIONS
37	The Role of Oxygen in the Degradation of Methylammonium Lead Trihalide Perovskite Photoactive Layers. Angewandte Chemie - International Edition, 2015, 54, 8208-8212.	7.2	749
38	The Role of Oxygen in the Degradation of Methylammonium Lead Trihalide Perovskite Photoactive Layers. Angewandte Chemie, 2015, 127, 8326-8330.	1.6	154
39	Ruthenium Dyes with Azo Ligands: Light Harvesting, Excited-State Properties and Relevance to Dye-Sensitised Solar Cells. European Journal of Inorganic Chemistry, 2015, 2015, 5864-5873.	1.0	4
40	Improved environmental stability of organic lead trihalide perovskite-based photoactive-layers in the presence of mesoporous TiO ₂ . Journal of Materials Chemistry A, 2015, 3, 7219-7223.	5.2	112
41	Solution Processed Bismuth Sulfide Nanowire Array Core/Silver Sulfide Shell Solar Cells. Chemistry of Materials, 2015, 27, 3700-3706.	3.2	37
42	Insight into quinoxaline containing D–π–A dyes for dye-sensitized solar cells with cobalt and iodine based electrolytes: the effect of π-bridge on the HOMO energy level and photovoltaic performance. Journal of Materials Chemistry A, 2015, 3, 21733-21743.	5.2	47
43	Structural, optical and charge generation properties of chalcostibite and tetrahedrite copper antimony sulfide thin films prepared from metal xanthates. Journal of Materials Chemistry A, 2015, 3, 24155-24162.	5.2	74
44	Polymer/Nanocrystal Hybrid Solar Cells: Influence of Molecular Precursor Design on Film Nanomorphology, Charge Generation and Device Performance. Advanced Functional Materials, 2015, 25, 409-420.	7.8	44
45	In situ formation of organic–inorganic hybrid nanostructures for photovoltaic applications. Faraday Discussions, 2014, 174, 267-79.	1.6	5
46	Exciton Dynamics in Hybrid Polymer/QD Blends. Energy Procedia, 2014, 44, 167-175.	1.8	5
47	Solutionâ€Processed Mesoscopic Bi ₂ S ₃ :Polymer Photoactive Layers. ChemPhysChem, 2014, 15, 1019-1023.	1.0	30
48	Impact of dithienyl or thienothiophene units on the optoelectronic and photovoltaic properties of benzo[1,2,5]thiadiazole based donor–acceptor copolymers for organic solar cell devices. RSC Advances, 2014, 4, 43142-43149.	1.7	13
49	Kinetic insight into bimolecular upconversion: experiment and simulation. RSC Advances, 2014, 4, 8059-8063.	1.7	16
50	Energy level alignment in TiO ₂ /metal sulfide/polymer interfaces for solar cell applications. Physical Chemistry Chemical Physics, 2014, 16, 17099-17107.	1.3	11
51	Spectroscopic Evaluation of Mixing and Crystallinity of Fullerenes in Bulk Heterojunctions. Advanced Functional Materials, 2014, 24, 6972-6980.	7.8	26
52	Controlling the Interaction of Light with Polymer Semiconductors. Advanced Materials, 2013, 25, 4906-4911.	11.1	42
53	Photoinduced electron and hole transfer in CdS:P3HT nanocomposite films: effect of nanomorphology on charge separation yield and solar cell performance. Journal of Materials Chemistry A, 2013, 1, 13896.	5.2	27
54	Charge Generation Dynamics in CdS:P3HT Blends for Hybrid Solar Cells. Journal of Physical Chemistry Letters, 2013, 4, 4253-4257.	2.1	31

#	Article	IF	Citations
55	Lowâ€Temperature Solution Processing of Mesoporous Metal–Sulfide Semiconductors as Lightâ€Harvesting Photoanodes. Angewandte Chemie - International Edition, 2013, 52, 12047-12051.	7.2	28
56	White light-emitting nanocomposites based on an oxadiazole–carbazole copolymer (POC) and InP/ZnS quantum dots. Journal of Nanoparticle Research, 2013, 15, 1.	0.8	22
57	Large-scale synthesis of nanocrystals in a multichannel droplet reactor. Journal of Materials Chemistry A, 2013, 1, 4067.	5.2	102
58	Two-dimensional spatial coherence of excitons in semicrystalline polymeric semiconductors: Effect of molecular weight. Physical Review B, 2013, 88, .	1.1	96
59	Solution Processed Polymer–Inorganic Semiconductor Solar Cells Employing Sb ₂ S ₃ as a Light Harvesting and Electron Transporting Material. Advanced Energy Materials, 2013, 3, 986-990.	10.2	69
60	Synthesis and optical characterisation of triphenylamine-based hole extractor materials for CdSe quantum dots. Physical Chemistry Chemical Physics, 2013, 15, 7679.	1.3	7
61	Influence of Crystallinity and Energetics on Charge Separation in Polymer–Inorganic Nanocomposite Films for Solar Cells. Scientific Reports, 2013, 3, 1531.	1.6	84
62	Influence of morphology and polymer:nanoparticle ratio on device performance of hybrid solar cellsâ€"an approach in experiment and simulation. Nanotechnology, 2013, 24, 484005.	1.3	27
63	Photophysics and morphology of a polyfluorene donor–acceptor triblock copolymer for solar cells. Journal of Polymer Science, Part B: Polymer Physics, 2013, 51, 1705-1718.	2.4	6
64	Lowâ€Temperature Solution Processing of Mesoporous Metal–Sulfide Semiconductors as Lightâ€Harvesting Photoanodes. Angewandte Chemie, 2013, 125, 12269-12273.	1.6	4
65	Electron and hole transfer at metal oxide/Sb2S3/spiro-OMeTAD heterojunctions. Energy and Environmental Science, 2012, 5, 9760.	15.6	55
66	Sensitization of TiO2 with PbSe Quantum Dots by SILAR: How Mercaptophenol Improves Charge Separation. Journal of Physical Chemistry Letters, 2012, 3, 3367-3372.	2.1	62
67	Charge photogeneration in hybrid solar cells: A comparison between quantum dots and in situ grown CdS. Nanoscale, 2012, 4, 1561.	2.8	64
68	Connecting the (quantum) dots: towards hybrid photovoltaic devices based on chalcogenide gels. Physical Chemistry Chemical Physics, 2012, 14, 15180.	1.3	16
69	Slow geminateâ€chargeâ€pair recombination dynamics at polymer: Fullerene heterojunctions in efficient organic solar cells. Journal of Polymer Science, Part B: Polymer Physics, 2012, 50, 1395-1404.	2.4	12
70	Thermal decomposition of solution processable metal xanthates on mesoporous titanium dioxide films: a new route to quantum-dot sensitised heterojunctions. Physical Chemistry Chemical Physics, 2012, 14, 16192.	1.3	27
71	Effect of Multiple Adduct Fullerenes on Microstructure and Phase Behavior of P3HT:Fullerene Blend Films for Organic Solar Cells. ACS Nano, 2012, 6, 3868-3875.	7.3	58
72	Toward Antimony Selenide Sensitized Solar Cells: Efficient Charge Photogeneration at <i>spiro</i> -OMeTAD/Sb ₂ Se ₃ /Metal Oxide Heterojunctions. Journal of Physical Chemistry Letters, 2012, 3, 1351-1356.	2.1	85

#	Article	IF	Citations
7 3	Ultrafast Transient Optical Studies of Charge Pair Generation and Recombination in Poly-3-Hexylthiophene(P3ht):[6,6]Phenyl C61 Butyric Methyl Acid Ester (PCBM) Blend Films. Journal of Physical Chemistry B, 2011, 115, 15174-15180.	1.2	29
74	Direct Growth of Metal Sulfide Nanoparticle Networks in Solidâ€State Polymer Films for Hybrid Inorganicâ€"Organic Solar Cells. Advanced Materials, 2011, 23, 2739-2744.	11.1	128
7 5	A Direct Route Towards Polymer/Copper Indium Sulfide Nanocomposite Solar Cells. Advanced Energy Materials, 2011, 1, 1046-1050.	10.2	102
76	Panchromatic response composed of hybrid visible-light absorbing polymers and near-IR absorbing dyes for nanocrystalline TiO2-based solid-state solar cells. Journal of Power Sources, 2011, 196, 596-599.	4.0	47
77	Triplet Formation in Fullerene Multiâ€Adduct Blends for Organic Solar Cells and Its Influence on Device Performance. Advanced Functional Materials, 2010, 20, 2701-2708.	7.8	53
78	Poly(thienylenevinylene) prepared by ring-opening metathesis polymerization: Performance as a donor in bulk heterojunction organic photovoltaic devices. Polymer, 2010, 51, 1541-1547.	1.8	28
79	TiO 2 thin-film transistors fabricated by spray pyrolysis. Applied Physics Letters, 2010, 96, .	1.5	50
80	Benzothiadiazole-Containing Pendant Polymers Prepared by RAFT and Their Electro-Optical Properties. Macromolecules, 2010, 43, 7101-7110.	2.2	25
81	Nanostructured Hybrid Polymerâ^'Inorganic Solar Cell Active Layers Formed by Controllable in Situ Growth of Semiconducting Sulfide Networks. Nano Letters, 2010, 10, 1253-1258.	4.5	220
82	Transient Optical Studies of Interfacial Charge Transfer at Nanostructured Metal Oxide/PbS Quantum Dot/Organic Hole Conductor Heterojunctions. Journal of the American Chemical Society, 2010, 132, 2743-2750.	6.6	110
83	Toward Organic All-Optical Switching. Science, 2010, 327, 1466-1467.	6.0	57
84	The influence of π–π-stacking on the light-harvesting properties of perylene bisimide antennas that are covalently linked to a [60]fullerene. Physical Chemistry Chemical Physics, 2010, 12, 14485.	1.3	12
85	Mutual Interplay of Light Harvesting and Triplet Sensitizing in a Perylene Bisimide Antennaâ^Fullerene Dyad. Journal of Physical Chemistry B, 2010, 114, 9148-9156.	1.2	56
86	PbS and CdS Quantum Dotâ€Sensitized Solidâ€State Solar Cells: "Old Concepts, New Results― Advanced Functional Materials, 2009, 19, 2735-2742.	7.8	458
87	A Hybrid Inorganic–Organic Semiconductor Lightâ€Emitting Diode Using ZrO ₂ as an Electronâ€Injection Layer. Advanced Materials, 2009, 21, 3475-3478.	11.1	162
88	The Effect of Ionization Potential and Film Morphology on Exciplex Formation and Charge Generation in Blends of Polyfluorene Polymers and Silole Derivatives. Journal of Physical Chemistry C, 2009, 113, 14533-14539.	1.5	19
89	Synthesis, Photophysical, and Device Properties of Novel Dendrimers Based on a Fluoreneâ^'Hexabenzocoronene (FHBC) Core. Organic Letters, 2009, 11, 975-978.	2.4	46
90	Energy- and charge-transfer processes in flexible organic donor-acceptor dyads. Journal of Chemical Physics, 2009, 131, 144512.	1.2	13

#	Article	IF	Citations
91	Charge separation and recombination in self-organizing nanostructured donor–acceptor block copolymer films. Journal of Materials Chemistry, 2009, 19, 5436.	6.7	33
92	Control of charge recombination at nanostructured quantum-dot sensitized TiO2 interfaces employing a multi-step redox cascade. Energy and Environmental Science, 2009, 2, 1176.	15.6	19
93	CdSe Quantum Dot-Sensitized Solar Cells Exceeding Efficiency 1% at Full-Sun Intensity. Journal of Physical Chemistry C, 2008, 112, 11600-11608.	1.5	339
94	Functionalized titania nanoparticles for mercury scavenging. Journal of Materials Chemistry, 2007, 17, 2028-2032.	6.7	12
95	Kinetic competition in liquid electrolyte and solid-state cyanine dye sensitized solar cells. Journal of Materials Chemistry, 2007, 17, 3037-3044.	6.7	156
96	DFT-INDO/S Modeling of New High Molar Extinction Coefficient Charge-Transfer Sensitizers for Solar Cell Applications. Inorganic Chemistry, 2006, 45, 787-797.	1.9	126
97	Impedance spectroscopy study of dye-sensitized solar cells with undoped spiro-OMeTAD as hole conductor. Journal of Applied Physics, 2006, 100, 034510.	1.1	59
98	Supermolecular Control of Charge Transfer in Dye-Sensitized Nanocrystalline TiO2 Films: Towards a Quantitative Structure-Function Relationship. Angewandte Chemie - International Edition, 2005, 44, 5740-5744.	7.2	228
99	Solid Film versus Solution-Phase Charge-Recombination Dynamics of exTTF–Bridge–C60 Dyads. Chemistry - A European Journal, 2005, 11, 7440-7447.	1.7	30
100	Transient Absorption Studies and Numerical Modeling of Iodine Photoreduction by Nanocrystalline TiO2Films. Journal of Physical Chemistry B, 2005, 109, 142-150.	1.2	87
101	Charge Separation versus Recombination in Dye-Sensitized Nanocrystalline Solar Cells:Â the Minimization of Kinetic Redundancy. Journal of the American Chemical Society, 2005, 127, 3456-3462.	6.6	477
102	Charge Transport versus Recombination in Dye-Sensitized Solar Cells Employing Nanocrystalline TiO2 and SnO2 Films. Journal of Physical Chemistry B, 2005, 109, 12525-12533.	1.2	377
103	Light-driven oxygen scavenging by titania/polymer nanocomposite films. Journal of Photochemistry and Photobiology A: Chemistry, 2004, 162, 253-259.	2.0	174
104	Towards optimisation of electron transfer processes in dye sensitised solar cells. Coordination Chemistry Reviews, 2004, 248, 1247-1257.	9.5	255
105	The origin of slow electron recombination processes in dye-sensitized solar cells with alumina barrier coatings. Journal of Applied Physics, 2004, 96, 6903-6907.	1.1	190
106	Transient Optical Studies of Interfacial Energetic Disorder at Nanostructured Dye-Sensitised Inorganic/Organic Semiconductor Heterojunctions. ChemPhysChem, 2003, 4, 89-93.	1.0	65
107	A solid compromise. Nature Materials, 2003, 2, 362-363.	13.3	73
108	Control of Charge Recombination Dynamics in Dye Sensitized Solar Cells by the Use of Conformally Deposited Metal Oxide Blocking Layers. Journal of the American Chemical Society, 2003, 125, 475-482.	6.6	1,020

#	Article	IF	CITATIONS
109	Flexible dye sensitised nanocrystalline semiconductor solar cells. Chemical Communications, 2003, , 3008.	2.2	137
110	Modulation of the Rate of Electron Injection in Dye-Sensitized Nanocrystalline TiO2Films by Externally Applied Bias. Journal of Physical Chemistry B, 2001, 105, 7424-7431.	1.2	171
111	Trap-limited recombination in dye-sensitized nanocrystalline metal oxide electrodes. Physical Review B, 2001, 63, .	1.1	378
112	Parameters Influencing Charge Recombination Kinetics in Dye-Sensitized Nanocrystalline Titanium Dioxide Films. Journal of Physical Chemistry B, 2000, 104, 538-547.	1.2	613
113	Electron Injection and Recombination in Dye Sensitized Nanocrystalline Titanium Dioxide Films:  A Comparison of Ruthenium Bipyridyl and Porphyrin Sensitizer Dyes. Journal of Physical Chemistry B, 2000, 104, 1198-1205.	1.2	433
114	Charge Separation in Solid-State Dye-Sensitized Heterojunction Solar Cells. Journal of the American Chemical Society, 1999, 121, 7445-7446.	6.6	195
115	Charge Recombination Kinetics in Dye-Sensitized Nanocrystalline Titanium Dioxide Films under Externally Applied Bias. Journal of Physical Chemistry B, 1998, 102, 1745-1749.	1.2	334
116	The Degradation Mechanism of Tin Perovskite Solar Cells and the Critical Role of Tin (IV) lodide. , 0, , .		0
117	Illuminating Charge-Transfer at the Absorber/Hole Transport Material Interface in Perovskite Solar Cells. , 0, , .		O
118	Optical and Electronic Property Changes in Lead-free Perovskites by Metal Cation Transmutation. , 0, , .		0
119	Degradation Mechanism of Hybrid Tin Perovskite and the Critical Role of Tin (IV) Iodide., 0,,.		O