
Beatrice Desvergne

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/231017/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Roles of PPARs in health and disease. Nature, 2000, 405, 421-424.	13.7	1,782
2	Peroxisome proliferator–activated receptor α mediates the adaptive response to fasting. Journal of Clinical Investigation, 1999, 103, 1489-1498.	3.9	1,423
3	Peroxisome Proliferator-Activated Receptors: Nuclear Control of Metabolism. , 1999, 20, 649-688.		1,128
4	Transcriptional Regulation of Metabolism. Physiological Reviews, 2006, 86, 465-514.	13.1	749
5	Endocrine Disruptors: From Endocrine to Metabolic Disruption. Annual Review of Physiology, 2011, 73, 135-162.	5.6	690
6	From molecular action to physiological outputs: Peroxisome proliferator-activated receptors are nuclear receptors at the crossroads of key cellular functions. Progress in Lipid Research, 2006, 45, 120-159.	5.3	656
7	PEROXISOME PROLIFERATOR-ACTIVATED RECEPTORS: A Nuclear Receptor Signaling Pathway in Lipid Physiology. Annual Review of Cell and Developmental Biology, 1996, 12, 335-363.	4.0	653
8	Antiapoptotic Role of PPARβ in Keratinocytes via Transcriptional Control of the Akt1 Signaling Pathway. Molecular Cell, 2002, 10, 721-733.	4.5	635
9	Peroxisome-proliferator-activated receptors and cancers: complex stories. Nature Reviews Cancer, 2004, 4, 61-70.	12.8	552
10	Characterization of the Fasting-induced Adipose Factor FIAF, a Novel Peroxisome Proliferator-activated Receptor Target Gene. Journal of Biological Chemistry, 2000, 275, 28488-28493.	1.6	481
11	Selective Cooperation between Fatty Acid Binding Proteins and Peroxisome Proliferator-Activated Receptors in Regulating Transcription. Molecular and Cellular Biology, 2002, 22, 5114-5127.	1.1	448
12	Rat PPARs: Quantitative Analysis in Adult Rat Tissues and Regulation in Fasting and Refeeding. Endocrinology, 2001, 142, 4195-4202.	1.4	433
13	Intestinal antiinflammatory effect of 5-aminosalicylic acid is dependent on peroxisome proliferator–activated receptor-l³. Journal of Experimental Medicine, 2005, 201, 1205-1215.	4.2	428
14	Attenuation of Colon Inflammation through Activators of the Retinoid X Receptor (Rxr)/Peroxisome Proliferator–Activated Receptor γ (Pparl³) Heterodimer. Journal of Experimental Medicine, 2001, 193, 827-838.	4.2	416
15	Impaired skin wound healing in peroxisome proliferator–activated receptor (PPAR)α and PPARβ mutant mice. Journal of Cell Biology, 2001, 154, 799-814.	2.3	388
16	Critical roles of PPARbeta /delta in keratinocyte response to inflammation. Genes and Development, 2001, 15, 3263-3277.	2.7	373
17	PGC1α expression is controlled in skeletal muscles by PPARβ, whose ablation results in fiber-type switching, obesity, and type 2 diabetes. Cell Metabolism, 2006, 4, 407-414.	7.2	340
18	Peroxisome proliferator-activated receptor is required in mature white and brown adipocytes for their survival in the mouse. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 4543-4547.	3.3	336

#	Article	IF	CITATIONS
19	DNA Binding Properties of Peroxisome Proliferator-activated Receptor Subtypes on Various Natural Peroxisome Proliferator Response Elements. Journal of Biological Chemistry, 1997, 272, 25252-25259.	1.6	330
20	Prostaglandin E2 promotes colorectal adenoma growth via transactivation of the nuclear peroxisome proliferator-activated receptor l'. Cancer Cell, 2004, 6, 285-295.	7.7	314
21	Polarity and Specific Sequence Requirements of Peroxisome Proliferator-activated Receptor (PPAR)/Retinoid X Receptor Heterodimer Binding to DNA. Journal of Biological Chemistry, 1997, 272, 20108-20117.	1.6	306
22	The Endocrine Disruptor Monoethyl-hexyl-phthalate Is a Selective Peroxisome Proliferator-activated Receptor Î ³ Modulator That Promotes Adipogenesis. Journal of Biological Chemistry, 2007, 282, 19152-19166.	1.6	294
23	Expression of the Peroxisome Proliferator-activated Receptor α Gene Is Stimulated by Stress and Follows a Diurnal Rhythm. Journal of Biological Chemistry, 1996, 271, 1764-1769.	1.6	291
24	PPAR-mediated activity of phthalates: A link to the obesity epidemic?. Molecular and Cellular Endocrinology, 2009, 304, 43-48.	1.6	267
25	Peroxisome proliferator activated receptors: transcriptional regulators of adipogenesis, lipid metabolism and more…. Chemistry and Biology, 1995, 2, 261-266.	6.2	259
26	NCoR1 Is a Conserved Physiological Modulator of Muscle Mass and Oxidative Function. Cell, 2011, 147, 827-839.	13.5	228
27	A New Selective Peroxisome Proliferator-Activated Receptor γ Antagonist with Antiobesity and Antidiabetic Activity. Molecular Endocrinology, 2002, 16, 2628-2644.	3.7	201
28	The peroxisome proliferatorâ€activated receptor α regulates amino acid metabolism. FASEB Journal, 2001, 15, 1971-1978.	0.2	198
29	Be Fit or Be Sick: Peroxisome Proliferator-Activated Receptors Are Down the Road. Molecular Endocrinology, 2004, 18, 1321-1332.	3.7	196
30	PixFRET, an ImageJ plug-in for FRET calculation that can accommodate variations in spectral bleed-throughs. Microscopy Research and Technique, 2005, 68, 51-58.	1.2	193
31	Peroxisome proliferator-activated receptor gamma activation is required for maintenance of innate antimicrobial immunity in the colon. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 8772-8777.	3.3	183
32	Differentiation of Trophoblast Giant Cells and Their Metabolic Functions Are Dependent on Peroxisome Proliferator-Activated Receptor β/δ. Molecular and Cellular Biology, 2006, 26, 3266-3281.	1.1	179
33	Genome-Wide RNA Polymerase II Profiles and RNA Accumulation Reveal Kinetics of Transcription and Associated Epigenetic Changes During Diurnal Cycles. PLoS Biology, 2012, 10, e1001442.	2.6	178
34	Peroxisome-Proliferator-Activated Receptor (PPAR)-Î ³ Activation Stimulates Keratinocyte Differentiation. Journal of Investigative Dermatology, 2004, 123, 305-312.	0.3	175
35	In vivo activation of PPAR target genes by RXR homodimers. EMBO Journal, 2004, 23, 2083-2091.	3.5	172
36	Crosstalk between peroxisome proliferator-activated receptor and VEGF stimulates cancer progression. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 19069-19074.	3.3	170

#	Article	IF	CITATIONS
37	Rat PPARs: Quantitative Analysis in Adult Rat Tissues and Regulation in Fasting and Refeeding. , 0, .		135
38	The Pollutant Diethylhexyl Phthalate Regulates Hepatic Energy Metabolism via Species-Specific PPARα-Dependent Mechanisms. Environmental Health Perspectives, 2010, 118, 234-241.	2.8	129
39	Interference of pollutants with PPARs: endocrine disruption meets metabolism. International Journal of Obesity, 2008, 32, S53-S61.	1.6	123
40	Peroxisome Proliferator-Activated Receptor β/Ĩ´ (PPARβ/δ) but Not PPARα Serves as a Plasma Free Fatty Acid Sensor in Liver. Molecular and Cellular Biology, 2009, 29, 6257-6267.	1.1	123
41	Multiple expression control mechanisms of peroxisome proliferator-activated receptors and their target genes. Journal of Steroid Biochemistry and Molecular Biology, 2005, 93, 99-105.	1.2	119
42	Induction of Cardiac Angptl4 by Dietary Fatty Acids Is Mediated by Peroxisome Proliferator-Activated Receptor β/δ and Protects Against Fatty Acid–Induced Oxidative Stress. Circulation Research, 2010, 106, 1712-1721.	2.0	118
43	PPAR expression and function during vertebrate development. International Journal of Developmental Biology, 2002, 46, 105-14.	0.3	117
44	Peroxisome Proliferator-activated Receptor β Regulates Acyl-CoA Synthetase 2 in Reaggregated Rat Brain Cell Cultures. Journal of Biological Chemistry, 1999, 274, 35881-35888.	1.6	114
45	Transcriptional profiling reveals divergent roles of PPARα and PPARβ/δ in regulation of gene expression in mouse liver. Physiological Genomics, 2010, 41, 42-52.	1.0	113
46	Fluorescence Imaging Reveals the Nuclear Behavior of Peroxisome Proliferator-activated Receptor/Retinoid X Receptor Heterodimers in the Absence and Presence of Ligand*♦. Journal of Biological Chemistry, 2005, 280, 17880-17890.	1.6	106
47	Peroxisome Proliferator-Activated Receptor β/δExerts a Strong Protection from Ischemic Acute Renal Failure. Journal of the American Society of Nephrology: JASN, 2005, 16, 2395-2402.	3.0	102
48	Differential Regulation of Vascular Endothelial Growth Factor Expression by Peroxisome Proliferator-activated Receptors in Bladder Cancer Cells. Journal of Biological Chemistry, 2002, 277, 23534-23543.	1.6	99
49	PPARβ∫δ Regulates Paneth Cell Differentiation Via Controlling the Hedgehog Signaling Pathway. Gastroenterology, 2006, 131, 538-553.	0.6	98
50	PPARÎ ³ in Placental Angiogenesis. Endocrinology, 2010, 151, 4969-4981.	1.4	98
51	PPARÎ 2 δ governs Wnt signaling and bone turnover. Nature Medicine, 2013, 19, 608-613.	15.2	98
52	High Risk for Hyperlipidemia and the Metabolic Syndrome after an Episode of Hypertriglyceridemia during 13- <i>cis</i> Retinoic Acid Therapy for Acne: A Pharmacogenetic Study. Annals of Internal Medicine, 2002, 136, 582.	2.0	91
53	Pancreatic Islet Adaptation to Fasting Is Dependent on Peroxisome Proliferator-Activated Receptor α Transcriptional Up-Regulation of Fatty Acid Oxidation. Endocrinology, 2005, 146, 375-382.	1.4	89
54	RXR: From Partnership to Leadership in Metabolic Regulations. Vitamins and Hormones, 2007, 75, 1-32.	0.7	88

#	Article	IF	CITATIONS
55	The peroxisome proliferator-activated receptors at the cross-road of diet and hormonal signalling. Journal of Steroid Biochemistry and Molecular Biology, 1998, 65, 65-74.	1.2	83
56	IL-13 induces expression of CD36 in human monocytes through PPARÎ ³ activation. European Journal of Immunology, 2007, 37, 1642-1652.	1.6	83
57	Role of Prostacyclin versus Peroxisome Proliferator-Activated Receptor β Receptors in Prostacyclin Sensing by Lung Fibroblasts. American Journal of Respiratory Cell and Molecular Biology, 2006, 34, 242-246.	1.4	79
58	Malignant Transformation of DMBA/TPA-Induced Papillomas and Nevi in the Skin of Mice Selectively Lacking Retinoid-X-Receptor α in Epidermal Keratinocytes. Journal of Investigative Dermatology, 2007, 127, 1250-1260.	0.3	78
59	From chronic overnutrition to metaflammation and insulin resistance: adipose tissue and liver contributions. FEBS Letters, 2017, 591, 3061-3088.	1.3	78
60	Essential role of Smad3 in the inhibition of inflammation-induced PPARβ/δ expression. EMBO Journal, 2004, 23, 4211-4221.	3.5	75
61	Peroxisome Proliferator-Activated Receptor-α-Null Mice Have Increased White Adipose Tissue Glucose Utilization, GLUT4, and Fat Mass: Role in Liver and Brain. Endocrinology, 2006, 147, 4067-4078.	1.4	73
62	Protective Role of Peroxisome Proliferator–activated Receptor-β/δ in Septic Shock. American Journal of Respiratory and Critical Care Medicine, 2010, 182, 1506-1515.	2.5	71
63	Molecular basis of selective PPARÎ ³ modulation for the treatment of Type 2 diabetes. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2007, 1771, 1094-1107.	1.2	70
64	Peroxisome Proliferator-Activated Receptor <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>β</mml:mi><mml:mo>/the Brain: Facts and Hypothesis. PPAR Research, 2008, 2008, 1-10.</mml:mo></mml:mrow></mml:math 	o>⊲mml:n	ni>뢢(mml:mi>
65	HDAC3 is a molecular brake of the metabolic switch supporting white adipose tissue browning. Nature Communications, 2017, 8, 93.	5.8	68
66	Glycogen synthase 2 is a novel target gene of peroxisome proliferator-activated receptors. Cellular and Molecular Life Sciences, 2007, 64, 1145-1157.	2.4	67
67	The anti-apoptotic role of PPARÎ ² contributes to efficient skin wound healing. Journal of Steroid Biochemistry and Molecular Biology, 2003, 85, 257-265.	1.2	66
68	Activation of the Mouse TATA-less and Human TATA-Containing UDP-Glucuronosyltransferase <i>1A1</i> Promoters by Hepatocyte Nuclear Factor 1. Molecular Pharmacology, 1999, 56, 526-536.	1.0	65
69	Delayed Hair Follicle Morphogenesis and Hair Follicle Dystrophy in a Lipoatrophy Mouse Model of Pparg Total Deletion. Journal of Investigative Dermatology, 2018, 138, 500-510.	0.3	63
70	Kinase signaling cascades that modulate peroxisome proliferator-activated receptors. Current Opinion in Cell Biology, 2005, 17, 216-222.	2.6	61
71	Integrative and Systemic Approaches for Evaluating PPARÎ ² /Î ⁷ (PPARD) Function. Nuclear Receptor Signaling, 2015, 13, nrs.13001.	1.0	60
72	Epithelium-Mesenchyme Interactions Control the Activity of Peroxisome Proliferator-Activated Receptor β/δ during Hair Follicle Development. Molecular and Cellular Biology, 2005, 25, 1696-1712.	1.1	57

#	Article	IF	CITATIONS
73	Stage-specific Integration of Maternal and Embryonic Peroxisome Proliferator-activated Receptor δ Signaling Is Critical to Pregnancy Success. Journal of Biological Chemistry, 2007, 282, 37770-37782.	1.6	55
74	How do thyroid hormone receptors bind to structurally diverse response elements?. Molecular and Cellular Endocrinology, 1994, 100, 125-131.	1.6	54
75	Maintenance of primary murine hepatocyte functions in multicomponent polymer capsules – in vitro cryopreservation studies. Journal of Hepatology, 2001, 34, 11-18.	1.8	54
76	SOCS3 Transactivation by PPARγ Prevents IL-17–Driven Cancer Growth. Cancer Research, 2013, 73, 3578-3590.	0.4	51
77	Transcriptional Regulatory Patterns of the Myelin Basic Protein and Malic Enzyme Genes by the Thyroid Hormone Receptors α1 and β1. Journal of Biological Chemistry, 1998, 273, 24239-24248.	1.6	50
78	Peroxisome proliferator-activated receptors $\hat{l}^2 \hat{l}'$: emerging roles for a previously neglected third family member. Current Opinion in Lipidology, 2003, 14, 129-135.	1.2	50
79	Functions of peroxisome proliferator-activated receptors (PPAR) in skin homeostasis. Lipids, 2004, 39, 1093-1099.	0.7	47
80	Genome-Wide Analysis of SREBP1 Activity around the Clock Reveals Its Combined Dependency on Nutrient and Circadian Signals. PLoS Genetics, 2014, 10, e1004155.	1.5	45
81	MRI monitoring of focal cerebral ischemia in peroxisome proliferator-activated receptor (PPAR)-deficient mice. NMR in Biomedicine, 2007, 20, 335-342.	1.6	43
82	PPARβ∫δAgonists Modulate Platelet Function via a Mechanism Involving PPAR Receptors and Specific Association/Repression of PKCα–Brief Report. Arteriosclerosis, Thrombosis, and Vascular Biology, 2009, 29, 1871-1873.	1.1	43
83	The PPARβ/Î′Agonist GW0742 Relaxes Pulmonary Vessels and Limits Right Heart Hypertrophy in Rats with Hypoxia-Induced Pulmonary Hypertension. PLoS ONE, 2010, 5, e9526.	1.1	43
84	Transcriptional Repression of Peroxisome Proliferator-activated Receptor β/δ in Murine Keratinocytes by CCAAT/Enhancer-binding Proteins*. Journal of Biological Chemistry, 2005, 280, 38700-38710.	1.6	42
85	Association with Coregulators Is the Major Determinant Governing Peroxisome Proliferator-activated Receptor Mobility in Living Cells. Journal of Biological Chemistry, 2007, 282, 4417-4426.	1.6	42
86	Critical roles of the nuclear receptor PPARβ (peroxisome-proliferator-activated receptor β) in skin wound healing. Biochemical Society Transactions, 2004, 32, 97-102.	1.6	41
87	Scaffold attachment factor B1 directly interacts with nuclear receptors in living cells and represses transcriptional activity. Journal of Molecular Endocrinology, 2005, 35, 503-517.	1.1	41
88	Peroxisome proliferator-activated receptor-β as a target for wound healing drugs. Expert Opinion on Therapeutic Targets, 2004, 8, 39-48.	1.5	40
89	Cell Autonomous Lipin 1 Function Is Essential for Development and Maintenance of White and Brown Adipose Tissue. Molecular and Cellular Biology, 2012, 32, 4794-4810.	1.1	40
90	Peroxisome proliferator-activated receptor β/δ as a therapeutic target for metabolic diseases. Expert Opinion on Therapeutic Targets, 2005, 9, 861-873.	1.5	39

#	Article	IF	CITATIONS
91	Functional role of RXRs and PPARÎ ³ in mature adipocytes. Prostaglandins Leukotrienes and Essential Fatty Acids, 2005, 73, 51-58.	1.0	39
92	Adipose Tissue Integrity as a Prerequisite for Systemic Energy Balance. Journal of Biological Chemistry, 2007, 282, 29946-29957.	1.6	38
93	Fatty Acids, Eicosanoids, and Hypolipidemic Agents Regulate Gene Expression Through Direct Binding to Peroxisome Proliferator-Activated Receptors. Advances in Experimental Medicine and Biology, 1999, 447, 199-209.	0.8	37
94	Genetic- or Transforming Growth Factor-β1-induced Changes in Epidermal Peroxisome Proliferator-activated Receptor β∬ Expression Dictate Wound Repair Kinetics. Journal of Biological Chemistry, 2005, 280, 18163-18170.	1.6	36
95	Altered Growth in Male Peroxisome Proliferator-Activated Receptor γ (PPARγ) Heterozygous Mice: Involvement of PPARγ in a Negative Feedback Regulation of Growth Hormone Action. Molecular Endocrinology, 2004, 18, 2363-2377.	3.7	35
96	Nephropathy in Pparg-null mice highlights PPARÎ ³ systemic activities in metabolism and in the immune system. PLoS ONE, 2017, 12, e0171474.	1.1	34
97	Peroxisome Proliferator-Activated Receptor (PPAR)-?? as a Target for Wound Healing Drugs. American Journal of Clinical Dermatology, 2003, 4, 523-530.	3.3	33
98	Combined Simulation and Mutagenesis Analyses Reveal the Involvement of Key Residues for Peroxisome Proliferator-activated Receptor1̂± Helix 12 Dynamic Behavior. Journal of Biological Chemistry, 2007, 282, 9666-9677.	1.6	33
99	PPARÎ ³ Controls Ectopic Adipogenesis and Cross-Talks with Myogenesis During Skeletal Muscle Regeneration. International Journal of Molecular Sciences, 2018, 19, 2044.	1.8	33
100	New Multicomponent Capsules for Immunoisolation. Annals of the New York Academy of Sciences, 1999, 875, 135-145.	1.8	32
101	RXRs: Collegial Partners. Sub-Cellular Biochemistry, 2014, 70, 75-102.	1.0	32
102	Selective Expression of a Dominant-Negative Form of Peroxisome Proliferator-Activated Receptor in Keratinocytes Leads to Impaired Epidermal Healing. Molecular Endocrinology, 2005, 19, 2335-2348.	3.7	30
103	Chronic liver iron overload in the baboon by ferric nitrilotriacetate. Digestive Diseases and Sciences, 1987, 32, 620-627.	1.1	29
104	Feedback on Hypothalamic TRH Transcription Is Dependent on Thyroid Hormone Receptor N Terminus. Molecular Endocrinology, 2002, 16, 1652-1666.	3.7	29
105	Systemic PPAR ^î ³ deletion in mice provokes lipoatrophy, organomegaly, severe type 2 diabetes and metabolic inflexibility. Metabolism: Clinical and Experimental, 2019, 95, 8-20.	1.5	28
106	PPARδʃβ: The Lobbyist Switching Macrophage Allegiance in Favor of Metabolism. Cell Metabolism, 2008, 7, 467-469.	7.2	27
107	Design, synthesis and biological evaluation of a class of bioisosteric oximes of the novel dual peroxisome proliferator-activated receptor α/γ ligand LT175. European Journal of Medicinal Chemistry, 2015, 90, 583-594.	2.6	25
108	Lack of Adipocytes Alters Hematopoiesis in Lipodystrophic Mice. Frontiers in Immunology, 2018, 9, 2573.	2.2	25

#	Article	IF	CITATIONS
109	Capsule permeability via polymer and protein ingress/egress. Journal of Applied Polymer Science, 2000, 75, 1165-1175.	1.3	24
110	PPARÎ ³ controls pregnancy outcome through activation of EG-VEGF: new insights into the mechanism of placental development. American Journal of Physiology - Endocrinology and Metabolism, 2015, 309, E357-E369.	1.8	23
111	Anti-adipogenic signals at the onset of obesity-related inflammation in white adipose tissue. Cellular and Molecular Life Sciences, 2021, 78, 227-247.	2.4	22
112	Promoter Rearrangements Cause Species-specific Hepatic Regulation of the Glyoxylate Reductase/Hydroxypyruvate Reductase Gene by the Peroxisome Proliferator-activated Receptor α. Journal of Biological Chemistry, 2005, 280, 24143-24152.	1.6	21
113	Double gene deletion reveals the lack of cooperation between PPARα and PPARβ in skeletal muscle. Biochemical and Biophysical Research Communications, 2007, 357, 877-881.	1.0	16
114	Transcriptional Regulation by Triiodothyronine of the UDP-glucuronosyltransferase Family 1 Gene Complex in Rat Liver. Journal of Biological Chemistry, 1997, 272, 17171-17175.	1.6	15
115	Steroid hormone pulsing drives cyclic gene expression. Nature Cell Biology, 2009, 11, 1051-1053.	4.6	15
116	Development of a Coculture Model of Encapsulated Cells. Annals of the New York Academy of Sciences, 2001, 944, 350-361.	1.8	14
117	Morbillivirus Glycoprotein Expression Induces ER Stress, Alters Ca2+ Homeostasis and Results in the Release of Vasostatin. PLoS ONE, 2012, 7, e32803.	1.1	14
118	The major transcription initiation site of the SV40 late promoter is a potent thyroid hormone response element. Nucleic Acids Research, 1997, 25, 1774-1781.	6.5	13
119	Differential regulation of RNA polymerase III genes during liver regeneration. Nucleic Acids Research, 2019, 47, 1786-1796.	6.5	12
120	Sex Dimorphism of Nonalcoholic Fatty Liver Disease (NAFLD) in Pparg-Null Mice. International Journal of Molecular Sciences, 2021, 22, 9969.	1.8	12
121	Impaired Musculoskeletal Response to Age and Exercise in PPARβâ^'/â^' Diabetic Mice. Endocrinology, 2014, 155, 4686-4696.	1.4	11
122	Hemicentin 1 influences podocyte dynamic changes in glomerular diseases. American Journal of Physiology - Renal Physiology, 2018, 314, F1154-F1165.	1.3	11
123	System analysis of cross-talk between nuclear receptors reveals an opposite regulation of the cell cycle by LXR and FXR in human HepaRG liver cells. PLoS ONE, 2019, 14, e0220894.	1.1	11
124	Nuclear Hormone Receptors and Mouse Skin Homeostasis: Implication of PPARβ. Hormone Research in Paediatrics, 2000, 54, 263-268.	0.8	10
125	Retinaldehyde: more than meets the eye. Nature Medicine, 2007, 13, 671-673.	15.2	10
126	Integrating nuclear receptor mobility in models of gene regulation. Nuclear Receptor Signaling, 2006, 4, nrs.04010.	1.0	8

#	Article	IF	CITATIONS
127	Modulation of Albumin Secretion by Ornithine Alpha-Ketoglutarate in Adult Rat Hepatocyte Cultures and a Human Hepatoma Cell Line (HepG ₂). Annals of Nutrition and Metabolism, 1989, 33, 252-260.	1.0	7
128	Epineurial adipocytes are dispensable for <scp>S</scp> chwann cell myelination. Journal of Neurochemistry, 2012, 123, 662-667.	2.1	5
129	PPARs in fetal and early postnatal development. Advances in Developmental Biology (Amsterdam,) Tj ETQq1 1 0	.784314 r 0.4	gBT_/Overloc
130	The roles of PPARα and PPARβ/δ in liver: Dietary versus endogenous fat sensor. Chemistry and Physics of Lipids, 2008, 154, S17.	1.5	4
131	PPAR Disruption: Cellular Mechanisms and Physiological Consequences. Chimia, 2008, 62, 340-344.	0.3	4
132	Peroxisome proliferator-activated receptor- \hat{l}^2 as a target for wound healing drugs. , 0, .		4
133	Representations of personalised medicine in family medicine: a qualitative analysis. , 2022, 23, 37.		2
134	PPARs: Nuclear Hormone Receptors Involved in the Control of Inflammation. , 0, , 419-435.		1
135	Effect of ornithine on transferrin secretion of rat and human hepatocyte cultures. Liver, 1988, 8, 360-365.	0.1	1
136	Renal mineralocorticoid receptor expression is reduced in lipoatrophy. FEBS Open Bio, 2019, 9, 328-334.	1.0	1
137	Lack of Adiponectin Drives Hyperosteoclastogenesis in Lipoatrophic Mice. Frontiers in Cell and Developmental Biology, 2021, 9, 627153.	1.8	1
138	PPARs: Lipid Sensors that Regulate Cell Differentiation Processes. , 2006, , 117-131.		0
139	PPARÂ regulates bone-metabolism by facilitating Wnt-signalling. Annals of the Rheumatic Diseases, 2011, 70, A90-A90.	0.5	0
140	New insights into the mechanism of PPAR \hat{I}^3 regulation of trophoblast invasion and placental vascularisation. Placenta, 2014, 35, A10-A11.	0.7	0
141	Les bases moléculaires de l'obésité : vers de nouvelles cibles thérapeutiques ?. Medecine/Sciences, 2000, 16, 1030.	0.0	0
142	Peroxisome Proliferator Activated Receptor Alpha Coordinates Intermediary Metabolism During Fasting. Medical Science Symposia Series, 2002, , 1-4.	0.0	0
143	Sensors for Metabolic Control. Growth Hormone, 2002, , 283-304.	0.2	Ο