
Robert-Alain Toillon

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/230979/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	p53 and breast cancer, an update. Endocrine-Related Cancer, 2006, 13, 293-325.	3.1	300
2	Nerve Growth Factor Stimulates Proliferation and Survival of Human Breast Cancer Cells through Two Distinct Signaling Pathways. Journal of Biological Chemistry, 2001, 276, 17864-17870.	3.4	200
3	TrkA overexpression enhances growth and metastasis of breast cancer cells. Oncogene, 2009, 28, 1960-1970.	5.9	176
4	NF-κB modulation and ionizing radiation: mechanisms and future directions for cancer treatment. Cancer Letters, 2006, 231, 158-168.	7.2	166
5	Radiation-enhanced cell migration/invasion process: A review. Critical Reviews in Oncology/Hematology, 2014, 92, 133-142.	4.4	140
6	Stable â€~portrait' of breast tumors during progression: data from biology, pathology and genetics. Endocrine-Related Cancer, 2004, 11, 497-522.	3.1	119
7	(â~')-Epigallocatechin (EGC) of Green Tea Induces Apoptosis of Human Breast Cancer Cells But Not of their Normal Counterparts. Breast Cancer Research and Treatment, 2002, 76, 195-201.	2.5	114
8	P21WAF1/CIP1 is dispensable for G1 arrest, but indispensable for apoptosis induced by sodium butyrate in MCF-7 breast cancer cells. Oncogene, 2004, 23, 21-29.	5.9	90
9	Sodium butyrate induces P53-independent, Fas-mediated apoptosis in MCF-7 human breast cancer cells. British Journal of Pharmacology, 2002, 135, 79-86.	5.4	80
10	Ferroquine, the next generation antimalarial drug, has antitumor activity. Scientific Reports, 2017, 7, 15896.	3.3	72
11	Pro-nerve Growth Factor Induces Autocrine Stimulation of Breast Cancer Cell Invasion through Tropomyosin-related Kinase A (TrkA) and Sortilin Protein. Journal of Biological Chemistry, 2012, 287, 1923-1931.	3.4	69
12	A ferrocenyl derivative of hydroxytamoxifen elicits an estrogen receptor-independent mechanism of action in breast cancer cell lines. Journal of Inorganic Biochemistry, 2010, 104, 503-511.	3.5	68
13	Role of the proteasome in the regulation of estrogen receptor α turnover and function in MCF-7 breast carcinoma cells. Journal of Steroid Biochemistry and Molecular Biology, 2005, 94, 347-359.	2.5	61
14	Neurotrophin signaling in cancer stem cells. Cellular and Molecular Life Sciences, 2016, 73, 1859-1870.	5.4	55
15	Concurrent hormone and radiation therapy in patients with breast cancer: what is the rationale?. Lancet Oncology, The, 2009, 10, 53-60.	10.7	51
16	Mechanisms governing the accumulation of estrogen receptor alpha in MCF-7 breast cancer cells treated with hydroxytamoxifen and related antiestrogens. Journal of Steroid Biochemistry and Molecular Biology, 2003, 87, 207-221.	2.5	47
17	Tamoxifen and TRAIL synergistically induce apoptosis in breast cancer cells. Oncogene, 2008, 27, 1472-1477.	5.9	44
18	The inÂvivo performance of ferrocenyl tamoxifen lipid nanocapsules in xenografted triple negative breast cancer. Biomaterials, 2013, 34, 6949-6956.	11.4	43

ROBERT-ALAIN TOILLON

#	Article	IF	CITATIONS
19	Normal breast epithelial cells induce p53-dependent apoptosis and p53-independent cell cycle arrest of breast cancer cells. Breast Cancer Research and Treatment, 2002, 71, 269-280.	2.5	42
20	Proteomics of Breast Cancer: The Quest for Markers and Therapeutic Targets. Journal of Proteome Research, 2008, 7, 1403-1411.	3.7	41
21	Silencing the Nucleocytoplasmic O-GlcNAc Transferase Reduces Proliferation, Adhesion, and Migration of Cancer and Fetal Human Colon Cell Lines. Frontiers in Endocrinology, 2016, 7, 46.	3.5	41
22	Inhibition of ectopic glioma tumor growth by a potent ferrocenyl drug loaded into stealth lipid nanocapsules. Nanomedicine: Nanotechnology, Biology, and Medicine, 2014, 10, 1667-1677.	3.3	38
23	Normal Breast Epithelial Cells Induce Apoptosis of Breast Cancer Cells via Fas Signaling. Experimental Cell Research, 2002, 275, 31-43.	2.6	36
24	The histone lysine methyltransferase Ezh2 is required for maintenance of the intestine integrity and for caudal fin regeneration in zebrafish. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2017, 1860, 1079-1093.	1.9	35
25	Differential recruitment of CD44 isoforms by ErbB ligands reveals an involvement of CD44 in breast cancer. Oncogene, 2018, 37, 1472-1484.	5.9	33
26	Effect of nuclear export inhibition on estrogen receptor regulation in breast cancer cells. Journal of Molecular Endocrinology, 2007, 39, 105-118.	2.5	28
27	Proteomics Demonstration That Normal Breast Epithelial Cells Can Induce Apoptosis of Breast Cancer Cells through Insulin-like Growth Factor-binding Protein-3 and Maspin. Molecular and Cellular Proteomics, 2007, 6, 1239-1247.	3.8	27
28	NGF-induced TrkA/CD44 association is involved in tumor aggressiveness and resistance to lestaurtinib. Oncotarget, 2015, 6, 9807-9819.	1.8	27
29	ProNGF increases breast tumor aggressiveness through functional association of TrkA with EphA2. Cancer Letters, 2019, 449, 196-206.	7.2	25
30	Interaction Between Estrogen Receptor Alpha, Ionizing Radiation and (anti-) Estrogens in Breast Cancer Cells. Breast Cancer Research and Treatment, 2005, 93, 207-215.	2.5	21
31	Autocrine and paracrine growth inhibitors of breast cancer cells. Breast Cancer Research and Treatment, 2000, 60, 251-258.	2.5	17
32	Small Structural Differences between Two Ferrocenyl Diphenols Determine Large Discrepancies of Reactivity and Biological Effects. ChemMedChem, 2019, 14, 1717-1726.	3.2	17
33	Estrogens decrease γ-ray–induced senescence and maintain cell cycle progression in breast cancer cells independently of p53. International Journal of Radiation Oncology Biology Physics, 2007, 67, 1187-1200.	0.8	16
34	Vimentin Promotes the Aggressiveness of Triple Negative Breast Cancer Cells Surviving Chemotherapeutic Treatment. Cells, 2021, 10, 1504.	4.1	14
35	Different clinical impact of estradiol receptor determination according to the analytical method: a study on 1940 breast cancer patients over a period of 16 consecutive years. Breast Cancer Research and Treatment, 2006, 95, 179-184.	2.5	13
36	Antiproliferative and apoptotic effects of the oxidative dimerization product of methyl caffeate on human breast cancer cells. Bioorganic and Medicinal Chemistry Letters, 2013, 23, 574-578.	2.2	12

#	Article	IF	CITATIONS
37	ORAI3 silencing alters cell proliferation and promotes mitotic catastrophe and apoptosis in pancreatic adenocarcinoma. Biochimica Et Biophysica Acta - Molecular Cell Research, 2021, 1868, 119023.	4.1	10
38	Alterations in both Heparan Sulfate Proteoglycans and Mitogenic Activity of Fibroblast Growth Factor-2 Are Triggered by Inhibitors of Proliferation in Normal and Breast Cancer Epithelial Cells. Experimental Cell Research, 1998, 245, 239-244.	2.6	9
39	Co-targeting Mitochondrial Ca2+ Homeostasis and Autophagy Enhances Cancer Cells' Chemosensitivity. IScience, 2020, 23, 101263.	4.1	8
40	Direct interaction of TrkA/CD44v3 is essential for NGF-promoted aggressiveness of breast cancer cells. Journal of Experimental and Clinical Cancer Research, 2022, 41, 110.	8.6	7
41	Normal Breast Epithelial Cells Induce Apoptosis of MCF-7 Breast Cancer Cells through a p53-Mediated Pathway. Molecular Cell Biology Research Communications: MCBRC: Part B of Biochemical and Biophysical Research Communications, 2000, 3, 338-344.	1.6	6
42	TRPM8-Rap1A Interaction Sites as Critical Determinants for Adhesion and Migration of Prostate and Other Epithelial Cancer Cells. Cancers, 2022, 14, 2261.	3.7	6
43	Expression and Prognostic Significance of Neurotrophins and Their Receptors in Canine Mammary Tumors. Veterinary Pathology, 2020, 57, 507-519.	1.7	2
44	Loss of Polycomb Repressive Complex 2 Function Alters Digestive Organ Homeostasis and Neuronal Differentiation in Zebrafish. Cells, 2021, 10, 3142.	4.1	1
45	WhatsApp com between glioma stem cells and differentiated cells to sustain tumor growth. Stem Cell Investigation, 2018, 5, 28-28.	3.0	0