Yuefeng Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2309745/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Efficient Electronic Modulation of g-C ₃ N ₄ Photocatalyst by Implanting Atomically Dispersed Ag ₁ -N ₃ for Extremely High Hydrogen Evolution Rates. CCS Chemistry, 2022, 4, 2793-2805.	4.6	13
2	Oil-water self-assembly engineering of Prussian blue/quantum dots decorated graphene film for wearable textile biosensors and photoelectronic unit. Chemical Engineering Journal, 2022, 427, 131824.	6.6	12
3	CuS -mediated two reaction systems enable biomimetic photocatalysis in CO2 reduction with visible light. Journal of Energy Chemistry, 2022, 65, 497-504.	7.1	16
4	Cu-embedded porous Al2O3 bifunctional catalyst derived from metal–organic framework for syngas-to-dimethyl ether. Chinese Chemical Letters, 2022, 33, 2906-2910.	4.8	3
5	Unravelling the Mechanism of Intermediateâ€Temperature CO ₂ Interaction with Moltenâ€NaNO ₃ â€Saltâ€Promoted MgO. Advanced Materials, 2022, 34, e2106677.	11.1	21
6	Cobalt single-atom catalysts for domino reductive amination and amidation of levulinic acid and related molecules to N-heterocycles. Chem Catalysis, 2022, 2, 178-194.	2.9	30
7	Modulating the dynamics of BrÃ,nsted acid sites on PtWOx inverse catalyst. Nature Catalysis, 2022, 5, 144-153.	16.1	35
8	Selective transfer hydrogenation coupling of nitroaromatics to azoxy/azo compounds by electron-enriched single Ni-N4 sites on mesoporous N-doped carbon. Chemical Engineering Journal, 2022, 443, 136416.	6.6	10
9	Synergy between Ru and WO <i>_x</i> Enables Efficient Hydrodeoxygenation of Primary Amides to Amines. ACS Catalysis, 2022, 12, 6302-6312.	5.5	18
10	Assessing the Nature of Active Sites on Nanodiamonds as Metal-Free Catalysts for the EB-to-ST Direct Dehydrogenation Using a Catalytic Approach. ACS Catalysis, 2022, 12, 6119-6131.	5.5	6
11	High-density MoCx nanoclusters anchored on nanodiamond-derived nanocarbon as a robust CO2 reduction catalyst for syngas production. Fuel, 2022, 323, 124347.	3.4	6
12	Multi-interfacial engineering of a coil-like NiS–Ni ₂ P/Ni hybrid to efficiently boost electrocatalytic hydrogen generation in alkaline and neutral electrolyte. Journal of Materials Chemistry A, 2022, 10, 13410-13417.	5.2	16
13	N-doped honeycomb-like porous carbon derived from biomass as an efficient carbocatalyst for H2S selective oxidation. Journal of Hazardous Materials, 2021, 403, 123806.	6.5	54
14	Hierarchical superhydrophilic/superaerophobic CoMnP/Ni ₂ P nanosheet-based microplate arrays for enhanced overall water splitting. Journal of Materials Chemistry A, 2021, 9, 22129-22139.	5.2	45
15	Selective Etching Quaternary MAX Phase toward Single Atom Copper Immobilized MXene (Ti ₃ C ₂ Cl _{<i>x</i>}) for Efficient CO ₂ Electroreduction to Methanol. ACS Nano, 2021, 15, 4927-4936.	7.3	139
16	Insights into the Active Sites of Al2O3-Supported NiMo Catalysts in the Hydrodenitrification Reaction. Industrial & Engineering Chemistry Research, 2021, 60, 8120-8126.	1.8	0
17	Ambient Hydrogenation and Deuteration of Alkenes Using a Nanostructured Niâ€Core–Shell Catalyst. Angewandte Chemie - International Edition, 2021, 60, 18591-18598.	7.2	30
18	Ambient Hydrogenation and Deuteration of Alkenes Using a Nanostructured Ni ore–Shell Catalyst. Angewandte Chemie, 2021, 133, 18739-18746.	1.6	15

#	Article	IF	CITATIONS
19	Tuning the Chemical Properties of Co–Ti ₃ C ₂ T <i>_x</i> MXene Materials for Catalytic CO ₂ Reduction. Small, 2021, 17, e2007509.	5.2	35
20	Heteroatom-Doped Monolithic Carbocatalysts with Improved Sulfur Selectivity and Impurity Tolerance for H ₂ S Selective Oxidation. ACS Catalysis, 2021, 11, 8591-8604.	5.5	30
21	Surface Oxygenate Species on TiC Reinforce Cobalt-Catalyzed Fischer–Tropsch Synthesis. ACS Catalysis, 2021, 11, 8087-8096.	5.5	15
22	Highly selective and robust single-atom catalyst Ru1/NC for reductive amination of aldehydes/ketones. Nature Communications, 2021, 12, 3295.	5.8	152
23	SiO ₂ -Coated Ag Nanoparticles for Conversion of Terminal Alkynes to Propolic Acids via CO ₂ Insertion. ACS Applied Nano Materials, 2021, 4, 7107-7115.	2.4	5
24	Porous Silicon Carbide (SiC): A Chance for Improving Catalysts or Just Another Active-Phase Carrier?. Chemical Reviews, 2021, 121, 10559-10665.	23.0	61
25	Frontispiz: Ambient Hydrogenation and Deuteration of Alkenes Using a Nanostructured Ni ore–Shell Catalyst. Angewandte Chemie, 2021, 133, .	1.6	0
26	Dynamic Behavior of Single-Atom Catalysts in Electrocatalysis: Identification of Cu-N ₃ as an Active Site for the Oxygen Reduction Reaction. Journal of the American Chemical Society, 2021, 143, 14530-14539.	6.6	218
27	Frontispiece: Ambient Hydrogenation and Deuteration of Alkenes Using a Nanostructured Ni ore–Shell Catalyst. Angewandte Chemie - International Edition, 2021, 60, .	7.2	1
28	Fabrication of Isolated VOx Sites on Alumina for Highly Active and Stable Non-Oxidative Dehydrogenation. Journal of Physical Chemistry C, 2021, 125, 19229-19237.	1.5	6
29	Revealing the Real Role of Nickel Decorated Nitrogenâ€Doped Carbon Catalysts for Electrochemical Reduction of CO ₂ to CO. Advanced Energy Materials, 2021, 11, 2101477.	10.2	63
30	In Situ Modulation of A‣ite Vacancies in LaMnO _{3.15} Perovskite for Surface Lattice Oxygen Activation and Boosted Redox Reactions. Angewandte Chemie - International Edition, 2021, 60, 26747-26754.	7.2	85
31	N-doped porous carbocatalyst engineering via modulating the crystalline size of ZIF-8 for continuous H2S selective oxidation. Applied Materials Today, 2021, 25, 101228.	2.3	9
32	Photocatalytic Chemoselective Transfer Hydrogenation of Quinolines to Tetrahydroquinolines on Hierarchical NiO/In ₂ O ₃ –CdS Microspheres. ACS Catalysis, 2021, 11, 13408-13415.	5.5	20
33	Ultra-high thermal stability of sputtering reconstructed Cu-based catalysts. Nature Communications, 2021, 12, 7209.	5.8	36
34	Converting Poisonous Sulfate Species to an Active Promoter on TiO ₂ Predecorated MnO _{<i>x</i>} Catalysts for the NH ₃ -SCR Reaction. ACS Applied Materials & Interfaces, 2021, 13, 61237-61247.	4.0	16
35	CO2 methanation under dynamic operational mode using nickel nanoparticles decorated carbon felt (Ni/OCF) combined with inductive heating. Catalysis Today, 2020, 357, 214-220.	2.2	29
36	Nanodiamonds @ N, P co-modified mesoporous carbon supported on macroscopic SiC foam for oxidative dehydrogenation of ethylbenzene. Catalysis Today, 2020, 357, 231-239.	2.2	17

#	Article	IF	CITATIONS
37	Tungsten Oxide/Carbide Surface Heterojunction Catalyst with High Hydrogen Evolution Activity. ACS Energy Letters, 2020, 5, 3560-3568.	8.8	70
38	Poly(imidazolium-methylene)-Assisted Grinding Strategy to Prepare Nanocarbon-Embedded Network Monoliths for Carbocatalysis. ACS Catalysis, 2020, 10, 14604-14614.	5.5	9
39	Highâ€Density and Thermally Stable Palladium Singleâ€Atom Catalysts for Chemoselective Hydrogenations. Angewandte Chemie - International Edition, 2020, 59, 21613-21619.	7.2	103
40	Enhancing N ₂ Fixation Activity by Converting Ti ₃ C ₂ MXenes Nanosheets to Nanoribbons. ChemSusChem, 2020, 13, 5614-5619.	3.6	26
41	Highâ€Density and Thermally Stable Palladium Singleâ€Atom Catalysts for Chemoselective Hydrogenations. Angewandte Chemie, 2020, 132, 21797-21803.	1.6	19
42	Doped Zeroâ€Ðimensional Cesium Zinc Halides for Highâ€Efficiency Blue Light Emission. Angewandte Chemie - International Edition, 2020, 59, 21414-21418.	7.2	97
43	Creation of N-C=O active groups on N-doped CNT as an efficient CarboCatalyst for solvent-free aerobic coupling of benzylamine. Carbon, 2020, 170, 338-346.	5.4	27
44	Highly Nickelâ€Loaded γâ€Alumina Composites for a Radiofrequencyâ€Heated, Lowâ€Temperature CO ₂ Methanation Scheme. ChemSusChem, 2020, 13, 5468-5479.	3.6	22
45	Highly Selective Hydrogen Peroxide Electrosynthesis on Carbon: In Situ Interface Engineering with Surfactants. CheM, 2020, 6, 1443-1458.	5.8	141
46	Identify Zr Promotion Effects in Atomic Scale for Co-Based Catalysts in Fischer–Tropsch Synthesis. ACS Catalysis, 2020, 10, 7894-7906.	5.5	57
47	Molybdenum carbide clusters for thermal conversion of CO2 to CO via reverse water-gas shift reaction. Journal of Energy Chemistry, 2020, 50, 37-43.	7.1	38
48	Reversible loss of core–shell structure for Ni–Au bimetallic nanoparticles during CO2 hydrogenation. Nature Catalysis, 2020, 3, 411-417.	16.1	186
49	Modulating Location of Single Copper Atoms in Polymeric Carbon Nitride for Enhanced Photoredox Catalysis. ACS Catalysis, 2020, 10, 5715-5722.	5.5	80
50	Defect enriched N-doped carbon nanoflakes as robust carbocatalysts for H ₂ S selective oxidation. Journal of Materials Chemistry A, 2020, 8, 8892-8902.	5.2	62
51	A nitrogen-doped carbon-coated silicon carbide as a robust and highly efficient metal-free catalyst for sour gas desulfurization in the presence of aromatics as contaminants. Catalysis Science and Technology, 2020, 10, 5487-5500.	2.1	15
52	Tuning the highly dispersed metallic Cu species via manipulating BrÃ,nsted acid sites of mesoporous aluminosilicate support for CO2 hydrogenation reactions. Applied Catalysis B: Environmental, 2020, 269, 118804.	10.8	22
53	Oxygen vacancy mediated CuyCo3-yFe1Ox mixed oxide as highly active and stable toluene oxidation catalyst by multiple phase interfaces formation and metal doping effect. Applied Catalysis B: Environmental, 2020, 269, 118827.	10.8	122
54	High-stability monoclinic nickel hexacyanoferrate cathode materials for ultrafast aqueous sodium ion battery. Chemical Engineering Journal, 2020, 388, 124228.	6.6	91

#	Article	IF	CITATIONS
55	Industrial carbon dioxide capture and utilization: state of the art and future challenges. Chemical Society Reviews, 2020, 49, 8584-8686.	18.7	610
56	Mono- and bimetallic metal catalysts based on Ni and Ru supported on alumina-coated monoliths for CO ₂ methanation. Catalysis Science and Technology, 2020, 10, 4061-4071.	2.1	19
57	A Special Section on Hierarchical Nanostructured Materials for Sustainable Catalysis. Journal of Nanoscience and Nanotechnology, 2020, 20, 1083-1084.	0.9	0
58	Induction Heating: An Enabling Technology for the Heat Management in Catalytic Processes. ACS Catalysis, 2019, 9, 7921-7935.	5.5	120
59	Atomic-Scale Observation of Bimetallic Au-CuO <i>_{<i>x</i>}</i> Nanoparticles and Their Interfaces for Activation of CO Molecules. ACS Applied Materials & Interfaces, 2019, 11, 35468-35478.	4.0	20
60	N-Doped 3D Mesoporous Carbon/Carbon Nanotubes Monolithic Catalyst for H ₂ S Selective Oxidation. ACS Applied Nano Materials, 2019, 2, 3780-3792.	2.4	43
61	Palladium Supported on Calcium Decorated Carbon Nanotube Hybrids for Chemoselective Hydrogenation of Cinnamaldehyde. Frontiers in Chemistry, 2019, 7, 751.	1.8	6
62	Single Atomic Cu-N2 Catalytic Sites for Highly Active and Selective Hydroxylation of Benzene to Phenol. IScience, 2019, 22, 97-108.	1.9	52
63	Macroscopic graphite felt containing palladium catalyst for liquid-phase hydrogenation of cinnamaldehyde. Applied Catalysis B: Environmental, 2019, 244, 128-139.	10.8	21
64	Trends in activity for the oxygen evolution reaction on transition metal (M = Fe, Co, Ni) phosphide pre-catalysts. Chemical Science, 2018, 9, 3470-3476.	3.7	443
65	Boosting the hydrogen evolution performance of ruthenium clusters through synergistic coupling with cobalt phosphide. Energy and Environmental Science, 2018, 11, 1819-1827.	15.6	350
66	Promising SiC support for Pd catalyst in selective hydrogenation of acetylene to ethylene. Applied Surface Science, 2018, 442, 736-741.	3.1	36
67	Ru/FeO x catalyst performance design: Highly dispersed Ru species for selective carbon dioxide hydrogenation. Chinese Journal of Catalysis, 2018, 39, 157-166.	6.9	14
68	Structure-performance relationship of nanodiamonds @ nitrogen-doped mesoporous carbon in the direct dehydrogenation of ethylbenzene. Catalysis Today, 2018, 301, 38-47.	2.2	31
69	Hollow cobalt phosphide octahedral pre-catalysts with exceptionally high intrinsic catalytic activity for electro-oxidation of water and methanol. Journal of Materials Chemistry A, 2018, 6, 20646-20652.	5.2	95
70	Preassembly Strategy To Fabricate Porous Hollow Carbonitride Spheres Inlaid with Single Cu–N ₃ Sites for Selective Oxidation of Benzene to Phenol. Journal of the American Chemical Society, 2018, 140, 16936-16940.	6.6	156
71	Biomassâ€Derived Grapheneâ€like Carbon: Efficient Metalâ€Free Carbocatalysts for Epoxidation. Angewandte Chemie - International Edition, 2018, 57, 16898-16902.	7.2	83
72	Graphenâ€Ă¤nlicher Kohlenstoff aus Biomasse: effiziente metallfreie Kohlenstoffkatalysatoren für Epoxidierungen. Angewandte Chemie, 2018, 130, 17141-17145.	1.6	4

#	Article	IF	CITATIONS
73	Carbon Felt Monoliths Coated with a Highly Hydrophobic Mesoporous Carbon Phase for the Continuous Oil Sorption/Filtration from Water. Advanced Sustainable Systems, 2018, 2, 1800040.	2.7	5
74	Nickel Sulfides Decorated SiC Foam for the Low Temperature Conversion of H2S into Elemental Sulfur. Molecules, 2018, 23, 1528.	1.7	1
75	Probing the enhanced catalytic activity of carbon nanotube supported Ni-LaO _x hybrids for the CO ₂ reduction reaction. Nanoscale, 2018, 10, 14207-14219.	2.8	36
76	Direct Insight into Ethane Oxidative Dehydrogenation over Boron Nitrides. ChemCatChem, 2017, 9, 3293-3297.	1.8	112
77	Self-Propagated Flaming Synthesis of Highly Active Layered CuO-δ-MnO ₂ Hybrid Composites for Catalytic Total Oxidation of Toluene Pollutant. ACS Applied Materials & Interfaces, 2017, 9, 21798-21808.	4.0	91
78	Synthesis and performance of vanadium-based catalysts for the selective oxidation of light alkanes. Catalysis Today, 2017, 298, 145-157.	2.2	32
79	The Coulombic Nature of Active Nitrogen Sites in N-Doped Nanodiamond Revealed In Situ by Ionic Surfactants. ACS Catalysis, 2017, 7, 3295-3300.	5.5	20
80	Functions in cooperation for enhanced oxygen reduction reaction: the independent roles of oxygen and nitrogen sites in metal-free nanocarbon and their functional synergy. Journal of Materials Chemistry A, 2017, 5, 3239-3248.	5.2	37
81	Hierarchical porous carbon fibers/carbon nanofibers monolith from electrospinning/CVD processes as a high effective surface area support platform. Journal of Materials Chemistry A, 2017, 5, 2151-2162.	5.2	48
82	A green and economical vapor-assisted ozone treatment process for surface functionalization of carbon nanotubes. Green Chemistry, 2017, 19, 1052-1062.	4.6	36
83	Oxygenated group and structural defect enriched carbon nanotubes for immobilizing gold nanoparticles. Chemical Communications, 2017, 53, 12750-12753.	2.2	22
84	Insight into the chemical adsorption properties of CO molecules supported on Au or Cu and hybridized Au–CuO nanoparticles. Nanoscale, 2017, 9, 15033-15043.	2.8	51
85	Hierarchically structured reactors containing nanocarbons for intensification of chemical reactions. Journal of Materials Chemistry A, 2017, 5, 22408-22441.	5.2	23
86	Macroscopically shaped monolith of nanodiamonds @ nitrogen-enriched mesoporous carbon decorated SiC as a superior metal-free catalyst for the styrene production. Applied Catalysis B: Environmental, 2017, 200, 343-350.	10.8	59
87	Impacts of SiC Carrier and Nickel Precursor of NiLa/support Catalysts for CO ₂ Selective Hydrogenation to Synthetic Natural Gas (SNG). ChemistrySelect, 2017, 2, 3750-3757.	0.7	13
88	Nitrogen-Doped Carbon Composites as Metal-Free Catalysts. , 2016, , 273-311.		0
89	Carbon nanotubes containing oxygenated decorating defects as metal-free catalyst for selective oxidation of H2S. Applied Catalysis B: Environmental, 2016, 191, 29-41.	10.8	58
90	Chemical functionalization of N-doped carbon nanotubes: a powerful approach to cast light on the electrochemical role of specific N-functionalities in the oxygen reduction reaction. Catalysis Science and Technology, 2016, 6, 6226-6236.	2.1	31

#	Article	IF	CITATIONS
91	Sampling the structure and chemical order in assemblies of ferromagnetic nanoparticles by nuclear magnetic resonance. Nature Communications, 2016, 7, 11532.	5.8	30
92	N-Doped Food-Grade-Derived 3D Mesoporous Foams as Metal-Free Systems for Catalysis. ACS Catalysis, 2016, 6, 1408-1419.	5.5	73
93	Nitrogen-doped carbon nanotube spheres as metal-free catalysts for the partial oxidation of H2S. Comptes Rendus Chimie, 2016, 19, 1303-1309.	0.2	33
94	Silicon carbide foam as a porous support platform for catalytic applications. New Journal of Chemistry, 2016, 40, 4285-4299.	1.4	92
95	Hierarchical carbon nanofibers/graphene composite containing nanodiamonds for direct dehydrogenation of ethylbenzene. Carbon, 2016, 96, 1060-1069.	5.4	24
96	Oneâ€Pot Synthesis of a Nitrogenâ€Doped Carbon Composite by Electrospinning as a Metalâ€Free Catalyst for Oxidation of H ₂ S to Sulfur. ChemCatChem, 2015, 7, 2957-2964.	1.8	48
97	A highly N-doped carbon phase "dressing―of macroscopic supports for catalytic applications. Chemical Communications, 2015, 51, 14393-14396.	2.2	43
98	Macroscopic nanodiamonds/β-SiC composite as metal-free catalysts for steam-free dehydrogenation of ethylbenzene to styrene. Applied Catalysis A: General, 2015, 499, 217-226.	2.2	53
99	Silicon carbide coated with TiO ₂ with enhanced cobalt active phase dispersion for Fischer–Tropsch synthesis. Chemical Communications, 2015, 51, 145-148.	2.2	50
100	Nanodiamond decorated few-layer graphene composite as an efficient metal-free dehydrogenation catalyst for styrene production. Catalysis Today, 2015, 249, 167-175.	2.2	45
101	Fischer–Tropsch Reaction on a Thermally Conductive and Reusable Silicon Carbide Support. ChemSusChem, 2014, 7, 1218-1239.	3.6	82
102	Efficient hierarchically structured composites containing cobalt catalyst for clean synthetic fuel production from Fischer–Tropsch synthesis. Journal of Catalysis, 2014, 318, 179-192.	3.1	37
103	Influence of structural parameters on methane adsorption over activated carbon: Evaluation by using D–A model. Fuel, 2014, 123, 241-247.	3.4	26
104	Nitrogen-doped carbon nanotubes on silicon carbide as a metal-free catalyst. Chinese Journal of Catalysis, 2014, 35, 906-913.	6.9	30
105	Carbon nanotubes decorated α-Al2O3 containing cobalt nanoparticles for Fischer-Tropsch reaction. Journal of Energy Chemistry, 2013, 22, 279-289.	7.1	24
106	Titania-Decorated Silicon Carbide-Containing Cobalt Catalyst for Fischer–Tropsch Synthesis. ACS Catalysis, 2013, 3, 393-404.	5.5	92
107	Microstructural Analysis and Energyâ€Filtered TEM Imaging to Investigate the Structure–Activity Relationship in Fischer–Tropsch Catalysts. ChemCatChem, 2013, 5, 2610-2620.	1.8	11
108	Synthesis of porous carbon nanotubes foam composites with a high accessible surface area and tunable porosity. Journal of Materials Chemistry A, 2013, 1, 9508.	5.2	69

#	Article	IF	CITATIONS
109	Co–Ru/SiC impregnated with ethanol as an effective catalyst for the Fischer–Tropsch synthesis. Applied Catalysis A: General, 2012, 419-420, 31-40.	2.2	58
110	A facile approach for the preparation of biomorphic CuO–ZrO2 catalyst for catalytic combustion of methane. Applied Catalysis A: General, 2012, 423-424, 121-129.	2.2	33
111	Oxidative dehydrogenation of propane over Ni-Mo-Mg-O catalysts. Journal of Natural Gas Chemistry, 2012, 21, 43-48.	1.8	15
112	Macroscopic shaping of carbon nanotubes with high specific surface area and full accessibility. Materials Letters, 2012, 79, 128-131.	1.3	29
113	Experimental and Modeling Study of Methane Adsorption on Activated Carbon Derived from Anthracite. Journal of Chemical & Engineering Data, 2011, 56, 4919-4926.	1.0	72
114	Novel F–V2O5/SiO2 catalysts for oxidative dehydrogenation of propane. Reaction Kinetics, Mechanisms and Catalysis, 2010, 101, 141-151.	0.8	10
115	In situ modulation of Aâ€site vacancies in LaMnO3.15 perovskite for surface lattice oxygen activation and boosted redox reactions. Angewandte Chemie, 0, , .	1.6	Ο