
Laura Hondebrink

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2309564/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Monitoring new psychoactive substances (NPS) in The Netherlands: Data from the drug market and the Poisons Information Centre. Drug and Alcohol Dependence, 2015, 147, 109-115.	1.6	95
2	Effect fingerprinting of new psychoactive substances (NPS): What can we learn from in vitro data?. , 2018, 182, 193-224.		75
3	Is the time right for in vitro neurotoxicity testing using human iPSC-derived neurons?. ALTEX: Alternatives To Animal Experimentation, 2016, 33, 261-71.	0.9	57
4	Neurotoxicity screening of (illicit) drugs using novel methods for analysis of microelectrode array (MEA) recordings. NeuroToxicology, 2016, 55, 1-9.	1.4	54
5	Measuring inhibition of monoamine reuptake transporters by new psychoactive substances (NPS) in real-time using a high-throughput, fluorescence-based assay. Toxicology in Vitro, 2017, 45, 60-71.	1.1	48
6	Pharmacokinetics, pharmacodynamics and toxicology of new psychoactive substances (NPS): 2C-B, 4-fluoroamphetamine and benzofurans. Drug and Alcohol Dependence, 2015, 157, 18-27.	1.6	42
7	Pharmacokinetics and pharmacodynamics of 3,4-methylenedioxymethamphetamine (MDMA): interindividual differences due to polymorphisms and drug–drug interactions. Critical Reviews in Toxicology, 2012, 42, 854-876.	1.9	41
8	Neurotoxicity screening of new psychoactive substances (NPS): Effects on neuronal activity in rat cortical cultures using microelectrode arrays (MEA). NeuroToxicology, 2018, 66, 87-97.	1.4	38
9	Neuropharmacological characterization of the new psychoactive substance methoxetamine. Neuropharmacology, 2017, 123, 1-9.	2.0	37
10	Cardiotoxicity screening of illicit drugs and new psychoactive substances (NPS) in human iPSC-derived cardiomyocytes using microelectrode array (MEA) recordings. Journal of Molecular and Cellular Cardiology, 2019, 136, 102-112.	0.9	36
11	New psychoactive substances (NPS) in the Netherlands: occurrence in forensic drug samples, consumer drug samples and poisons center exposures between 2013 and 2017. Addiction, 2020, 115, 716-725.	1.7	31
12	Fatalities, Cerebral Hemorrhage, and Severe Cardiovascular Toxicity After Exposure to the New Psychoactive Substance 4-Fluoroamphetamine: AÂProspective Cohort Study. Annals of Emergency Medicine, 2018, 71, 294-305.	0.3	28
13	High concentrations of MDMA (â€ ⁻ ecstasy') and its metabolite MDA inhibit calcium influx and depolarization-evoked vesicular dopamine release in PC12 cells. Neuropharmacology, 2011, 61, 202-208.	2.0	19
14	Changes in neuronal activity in rat primary cortical cultures induced by illicit drugs and new psychoactive substances (NPS) following prolonged exposure and washout to mimic human exposure scenarios. NeuroToxicology, 2019, 74, 28-39.	1.4	19
15	Modulation of human GABAA receptor function: A novel mode of action of drugs of abuse. NeuroToxicology, 2011, 32, 823-827.	1.4	16
16	Acute toxic effects related to 4-fluoroamphetamine. Lancet, The, 2017, 389, 600.	6.3	16
17	Additive inhibition of human α1β2γ2 GABAA receptors by mixtures of commonly used drugs of abuse. NeuroToxicology, 2013, 35, 23-29.	1.4	15
18	Hazard Characterization of Synthetic Cathinones Using Viability, Monoamine Reuptake, and Neuronal Activity Assays. Frontiers in Neuroscience, 2020, 14, 9.	1.4	14

Laura Hondebrink

#	Article	IF	CITATIONS
19	Amphetamine reduces vesicular dopamine content in dexamethasoneâ€differentiated PC12 cells only following <scp>l</scp> â€DOPA exposure. Journal of Neurochemistry, 2009, 111, 624-633.	2.1	13
20	Synthetic Cathinones and Their Potential Interactions with Prescription Drugs. Therapeutic Drug Monitoring, 2020, 42, 75-82.	1.0	13
21	Methamphetamine, amphetamine, MDMA (â€~ecstasy'), MDA and mCPP modulate electrical and cholinergic input in PC12 cells. NeuroToxicology, 2012, 33, 255-260.	1.4	11
22	Differential effects of psychoactive substances on human wildtype and polymorphic T356M dopamine transporters (DAT). Toxicology, 2019, 422, 69-75.	2.0	10
23	Combining ecstasy and ethanol: higher risk for toxicity? A review. Critical Reviews in Toxicology, 2021, 51, 1-14.	1.9	10
24	Structure-dependent inhibition of the human α 1 β 2 γ 2 GABA A receptor by piperazine derivatives: A novel mode of action. NeuroToxicology, 2015, 51, 1-9.	1.4	9
25	Pregabalin poisoning: Evaluation of doseâ€ŧoxicity relationship. British Journal of Clinical Pharmacology, 2022, 88, 1288-1297.	1.1	8
26	Significant toxicity following an increase in poisonings with designer benzodiazepines in the Netherlands between 2010 and 2020. Drug and Alcohol Dependence, 2022, 231, 109244.	1.6	8
27	Are high-throughput measurements of intracellular calcium using plate-readers sufficiently accurate and reliable?. Toxicology and Applied Pharmacology, 2010, 249, 247-248.	1.3	5
28	A quarter of admitted poisoned patients have a mild poisoning and require no treatment: An observational study. European Journal of Internal Medicine, 2019, 66, 41-47.	1.0	5
29	Hyperthermia exacerbates the acute effects of psychoactive substances on neuronal activity measured using microelectrode arrays (MEAs) in rat primary cortical cultures in vitro. Toxicology and Applied Pharmacology, 2020, 397, 115015.	1.3	5
30	Novel Phenethylamines and Their Potential Interactions With Prescription Drugs: A Systematic Critical Review. Therapeutic Drug Monitoring, 2020, 42, 271-281.	1.0	5
31	3-Methylmethcathinone (3-MMC) Poisonings: Acute Clinical Toxicity and Time Trend Between 2013 and 2021 in the Netherlands. Annals of Emergency Medicine, 2022, 80, 203-212.	0.3	5
32	Methylphenidate intoxications in children and adults: exposure circumstances and evidence-based dose threshold for pre-hospital triage. Clinical Toxicology, 2015, 53, 168-177.	0.8	4
33	The Clinical Toxicology of 4-Bromo-2,5-dimethoxyphenethylamine (2C-B): The Severity of Poisoning After Exposure to Low to Moderate and High Doses. Annals of Emergency Medicine, 2020, 76, 303-317.	0.3	4
34	Methylphenidate poisoning: relatively mild symptoms even after high-dose exposure. Clinical Toxicology, 2017, 55, 941-942.	0.8	2