Krzysztof Karczewski

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2309497/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Mo–Si–B alloys for ultra-high-temperature space and ground applications: liquid-assisted fabrication under various temperature and time conditions. Journal of Materials Science, 2022, 57, 13724-13735.	3.7	8
2	Method of creating 3D models of small caliber cerebral arteries basing on anatomical specimens. Journal of Biomechanics, 2021, 125, 110590.	2.1	4
3	TiCoCrFeMn (BCC + C14) High-Entropy Alloy Multiphase Structure Analysis Based on the Theory of Molecular Orbitals. Materials, 2021, 14, 5285.	2.9	3
4	Pom-pom-like nanowire clusters prepared by potentiostatic oxidation of copper in NH4HCO3 solution. Surface and Coatings Technology, 2021, 425, 127674.	4.8	4
5	Direct Synthesis of Fe-Al Alloys from Elemental Powders Using Laser Engineered Net Shaping. Materials, 2020, 13, 531.	2.9	23
6	Possibility of Strengthening Aluminum Using Low-Symmetry Phases of the Fe-Al Binary System. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2019, 50, 1914-1921.	2.2	2
7	Investigation of oxide nanowires growth on copper via passivation in NaOH aqueous solution. Surfaces and Interfaces, 2019, 14, 15-18.	3.0	8
8	Fabrication of copper nanowires via electrodeposition in anodic aluminum oxide templates formed by combined hard anodizing and electrochemical barrier layer thinning. Journal of Electroanalytical Chemistry, 2018, 809, 59-66.	3.8	31
9	Mg2FeH6 Synthesis Efficiency Map. Crystals, 2018, 8, 94.	2.2	17
10	The Microstructure Evolution of a Fe3Al Alloy during the LENS Process. Materials, 2018, 11, 390.	2.9	6
11	Fabrication of FeAl Intermetallic Foams by Tartaric Acid-Assisted Self-Propagating High-Temperature Synthesis. Materials, 2018, 11, 621.	2.9	16
12	Morphology and photoluminescence of nanostructured oxides grown by copper passivation in aqueous potassium hydroxide solution. Materials Letters, 2017, 198, 89-92.	2.6	16
13	Fe-Al thin walls manufactured by Laser Engineered Net Shaping. Journal of Alloys and Compounds, 2017, 696, 1105-1112.	5.5	37
14	Amino Acids Aided Sintering for the Formation of Highly Porous FeAl Intermetallic Alloys. Materials, 2017, 10, 746.	2.9	11
15	Advanced Image Analysis of the Surface Pattern Emerging in Ni3Al Intermetallic Alloys on Anodization. Frontiers in Materials, 2016, 3, .	2.4	7
16	Highly-porous FeAl intermetallic foams formed via sintering with Eosin Y as a gas releasing agent. Materials Letters, 2016, 178, 268-271.	2.6	21
17	Crystalline oxalic acid aided FeAl intermetallic alloy sintering. Fabrication of intermetallic foam with porosity above 45%. Materials Letters, 2016, 164, 32-34.	2.6	21
18	Studies of Confined Explosions of Composite Explosives and Layered Charges. Central European Journal of Energetic Materials, 2016, 13, 957-977.	0.4	8

KRZYSZTOF KARCZEWSKI

#	Article	IF	CITATIONS
19	Fabrication of Fe-Al Intermetallic Foams via Organic Compounds Assisted Sintering. Materials, 2015, 8, 2217-2226.	2.9	14
20	Nanoporous alumina formed by self-organized two-step anodization of Ni3Al intermetallic alloy in citric acid. Applied Surface Science, 2013, 264, 605-610.	6.1	21
21	The effect of loading mode changes during the sintering process on the mechanical properties of FeAl intermetallic sinters. Intermetallics, 2013, 33, 99-104.	3.9	12
22	Maps of Fe–Al phases formation kinetics parameters during isothermal sintering. Thermochimica Acta, 2012, 545, 14-19.	2.7	15
23	H2 absorption at ambient conditions by anodized aluminum oxide (AAO) pattern-transferred Pd nanotubes occluded by Mg nanoparticles. Materials Chemistry and Physics, 2012, 133, 376-382.	4.0	10
24	Fe–Al phase formation around SHS reactions under isothermal conditions. Journal of Alloys and Compounds, 2011, 509, 1124-1128.	5.5	29
25	Modification of Fe and Al elemental powders' sintering with addition of magnesium and magnesium hydride. Intermetallics, 2011, 19, 1555-1562.	3.9	11
26	The influence of different additives on the kinetics of self-propagating high-temperature synthesis during the sintering process of Fe and Al elemental powders. Intermetallics, 2010, 18, 1401-1404.	3.9	26
27	Kinetics of reactions in FeAl synthesis studied by the DTA technique and JMA model. Intermetallics, 2010, 18, 1332-1337.	3.9	36