
Artak E Kostanyan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/230905/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Multiple dual mode counter-current chromatography with variable duration of alternating phase elution steps. Journal of Chromatography A, 2014, 1347, 87-95.	1.8	44
2	Controlled-cycle pulsed liquid–liquid chromatography. A modified version of Craig's counter-current distribution. Journal of Chromatography A, 2011, 1218, 6135-6143.	1.8	39
3	On influence of sample loading conditions on peak shape and separation efficiency in preparative isocratic counter-current chromatography. Journal of Chromatography A, 2012, 1254, 71-77.	1.8	38
4	Steady state preparative multiple dual mode counter-current chromatography: Productivity and selectivity. Theory and experimental verification. Journal of Chromatography A, 2015, 1406, 118-128.	1.8	36
5	Modelling counter-current and dual counter-current chromatography using longitudinal mixing cell and eluting counter-current distribution models. Journal of Chromatography A, 2007, 1151, 142-147.	1.8	35
6	Intermittent counter-current extraction—Equilibrium cell model, scaling and an improved bobbin design. Journal of Chromatography A, 2013, 1303, 18-27.	1.8	34
7	Analysis of new counter-current chromatography operating modes. Journal of Chromatography A, 2007, 1151, 126-130.	1.8	29
8	Steady-state and non-steady state operation of counter-current chromatography devices. Journal of Chromatography A, 2013, 1314, 94-105.	1.8	28
9	Simple equations to simulate closed-loop recycling liquid–liquid chromatography: Ideal and non-ideal recycling models. Journal of Chromatography A, 2015, 1423, 71-78.	1.8	28
10	Multiple dual mode counter-current chromatography with periodic sample injection: Steady-state and non-steady-state operation. Journal of Chromatography A, 2014, 1373, 81-89.	1.8	27
11	Modeling of preparative closed-loop recycling liquid-liquid chromatography with specified duration of sample loading. Journal of Chromatography A, 2016, 1471, 94-101.	1.8	27
12	Controlled-cycle counter-current chromatography. Journal of Chromatography A, 2008, 1211, 55-59.	1.8	26
13	Theoretical study of closed-loop recycling liquid-liquid chromatography and experimental verification of the theory. Journal of Chromatography A, 2016, 1462, 55-62.	1.8	25
14	Support-free pulsed liquid–liquid chromatography. Journal of Chromatography A, 2009, 1216, 7761-7766.	1.8	24
15	General regularities of liquid chromatography and countercurrent extraction. Theoretical Foundations of Chemical Engineering, 2006, 40, 587-593.	0.2	23
16	Analysis of cyclic liquid chromatography. Theoretical Foundations of Chemical Engineering, 2011, 45, 68-74.	0.2	23
17	Modeling of two semi-continuous methods in liquid–liquid chromatography: Comparing conventional and closed-loop recycling modes. Journal of Chromatography A, 2020, 1614, 460735.	1.8	23
18	Modeling of closed-loop recycling liquid–liquid chromatography: Analytical solutions and model analysis. Journal of Chromatography A, 2015, 1406, 156-164.	1.8	22

#	Article	IF	CITATIONS
19	Simultaneous concentration and separation of target compounds from multicomponent mixtures by closed-loop recycling countercurrent chromatography. Journal of Chromatography A, 2018, 1560, 26-34.	1.8	22
20	Multiphase Extraction: Design of Single- and Multistage Separation Using Liquid Pseudomembranes. Doklady Chemistry, 2005, 404, 203-205.	0.2	19
21	Industrial countercurrent chromatography separations based on a cascade of centrifugal mixer-settler extractors. Journal of Chromatography A, 2018, 1572, 212-216.	1.8	18
22	Scaling-up Effect in Chemical Engineering. Theoretical Foundations of Chemical Engineering, 2002, 36, 307-313.	0.2	17
23	Extraction of uranyl, ytterbium, and lanthanum nitrates in a three-compartment multiphase extractor. Theoretical Foundations of Chemical Engineering, 2008, 42, 718-723.	0.2	17
24	Extraction Chromatographic Separation of Rare-Earth Metals in a Cascade of Centrifugal Extractors. Russian Journal of Inorganic Chemistry, 2018, 63, 287-292.	0.3	16
25	Theoretical study of industrial scale closed-loop recycling counter-current chromatography separations. Journal of Chromatography A, 2020, 1633, 461630.	1.8	15
26	Analysis of cyclic column chromatography. Theoretical Foundations of Chemical Engineering, 2008, 42, 524-529.	0.2	14
27	Staged Versions of Liquid Membrane Extraction Processes. Solvent Extraction and Ion Exchange, 2013, 31, 297-305.	0.8	13
28	Modelling of elution–extrusion counter-current chromatography using perfect replacement approach. Journal of Chromatography A, 2011, 1218, 6412-6418.	1.8	12
29	Theoretical study of separation and concentration of solutes by closed-loop recycling liquid-liquid chromatography with multiple sample injection. Journal of Chromatography A, 2017, 1506, 82-92.	1.8	12
30	Closed-loop recycling dual-mode counter-current chromatography. A theoretical study. Journal of Chromatography A, 2019, 1588, 174-179.	1.8	12
31	Modeling of closed-loop recycling dual-mode counter-current chromatography based on non-ideal recycling model. Journal of Chromatography A, 2019, 1603, 240-250.	1.8	12
32	Linear models of three-phase extraction processes. Theoretical Foundations of Chemical Engineering, 2007, 41, 755-759.	0.2	11
33	Pulsed cyclic device for liquid countercurrent chromatography. Theoretical Foundations of Chemical Engineering, 2011, 45, 779-785.	0.2	11
34	An easy-to-use calculating machine to simulate steady state and non-steady-state preparative separations by multiple dual mode counter-current chromatography with semi-continuous loading of feed mixtures. Journal of Chromatography A, 2018, 1552, 92-98.	1.8	11
35	Separation of liquid mixtures by dynamic countercurrent cyclic extraction. Theoretical Foundations of Chemical Engineering, 2015, 49, 560-566.	0.2	10
36	Chromatographic behavior of six lanthanides on a centrifugal mixer-settler extractor cascade. Journal of Chromatography A, 2020, 1634, 461686.	1.8	10

Artak E Kostanyan

#	Article	IF	CITATIONS
37	On the application of liquid-membrane principle in a system of mixing-settling extractors. Theoretical Foundations of Chemical Engineering, 2013, 47, 495-498.	0.2	9
38	Pulsation cyclic liquid-liquid chromatography. Theoretical Foundations of Chemical Engineering, 2009, 43, 729-733.	0.2	8
39	Study of metal extraction in high-frequency vibration mini-columns. Russian Journal of Inorganic Chemistry, 2010, 55, 794-797.	0.3	7
40	Extraction of lactic acid from technological (concentrated) solutions. Theoretical Foundations of Chemical Engineering, 2010, 44, 782-785.	0.2	7
41	Analysis of the three-step cyclic process of countercurrent extraction. Theoretical Foundations of Chemical Engineering, 2015, 49, 183-190.	0.2	7
42	Increasing Efficiency of the Separation of Substance Mixtures by Methods of Liquid–Liquid Chromatography. Journal of Analytical Chemistry, 2020, 75, 1384-1398.	0.4	7
43	A simple and highly efficient counter-current chromatography method for the isolation of concentrated fractions of compounds based on the sequential sample loading technique: Comparative theoretical study of conventional multiple and intermittent sample loading counter-current chromatography separations, lournal of Chromatography A, 2021, 1647, 462163.	1.8	6
44	Analysis of cyclic process of multistep counterflow mass transfer. Theoretical Foundations of Chemical Engineering, 2014, 48, 127-137.	0.2	5
45	New binary extractants and prospects of their application. Theoretical Foundations of Chemical Engineering, 2016, 50, 582-587.	0.2	5
46	Column miniextractors with a vibrating nozzle. Theoretical Foundations of Chemical Engineering, 2010, 44, 616-618.	0.2	3
47	Investigation into the Extraction–Chromatographic Separation of a Binary Mixture in a Series of Multistage Columns. Theoretical Foundations of Chemical Engineering, 2019, 53, 950-953.	0.2	3
48	Theoretical Analysis of Periodic Processes of Extraction-Chromatographic Separation in a Closed Cascade of Apparatuses. Doklady Chemistry, 2021, 499, 171-175.	0.2	3
49	Analysis of the Processes of Extraction–Chromatographic Separation in a Cascade of Mixing–Settling Extractors. Theoretical Foundations of Chemical Engineering, 2021, 55, 862-869.	0.2	3
50	Columns for cyclic extraction-chromatographic device. Theoretical Foundations of Chemical Engineering, 2014, 48, 733-736.	0.2	2
51	Analysis of the process of the countercurrent cyclic chromatography. Theoretical Foundations of Chemical Engineering, 2014, 48, 737-743.	0.2	2
52	On increasing the efficiency of multistage extractive separation of metals. Theoretical Foundations of Chemical Engineering, 2016, 50, 890-893.	0.2	2
53	Multistage bubble suspended-bed column reactor for hydrocarbon oxidation processes. Theoretical Foundations of Chemical Engineering, 2013, 47, 660-662.	0.2	1
54	Half-periodic process of the multistage cyclic countercurrent extraction. Theoretical Foundations of Chemical Engineering, 2015, 49, 779-785.	0.2	1

Artak E Kostanyan

#	Article	IF	CITATIONS
55	Non-Steady-State Convective Diffusion in a One-Dimensional Closed Loop. Theoretical Foundations of Chemical Engineering, 2017, 51, 1021-1029.	0.2	1
56	Analysis of Extraction Chromatographic Separation of a Binary Mixture in a Series of Multistage Columns. Theoretical Foundations of Chemical Engineering, 2019, 53, 939-944.	0.2	1
57	On the Operation of Centrifugal Extractors in Liquid–Liquid Chromatography Mode. Theoretical Foundations of Chemical Engineering, 2021, 55, 835-839.	0.2	1
58	Closed-Loop Recycling Dual-Mode Counter-Current Chromatography with Specified Sample Loading Durations: Modeling of Preparative and Industrial-Scale Separations. Molecules, 2021, 26, 6561.	1.7	1
59	Pilot Plant for Studies of REE Separation by Extraction Chromatography Based on a Cascade of Centrifugal Extractors. Theoretical Foundations of Chemical Engineering, 2021, 55, 1097-1106.	0.2	1
60	Experimental Study of the Chromatographic Extraction Process of Separation in a Closed Multistage Loop. Theoretical Foundations of Chemical Engineering, 2021, 55, 1107-1110.	0.2	1
61	Vibration column extractors. Chemical and Petroleum Engineering (English Translation of) Tj ETQq1 1 0.784314	rgBT/Ove	erlock 10 Tf 5
62	The hydraulic and mass-exchange characteristics of a column extractor with rotary-vibrational shaft motion. Chemical and Petroleum Engineering (English Translation of Khimicheskoe I Neftyanoe) Tj ETQq0 0 0 rg	BT Øverlo	ock 0 0 Tf 50 4
63	Some principles of modeling extraction columns with rotary vibrations of the packing. Chemical and Petroleum Engineering (English Translation of Khimicheskoe I Neftyanoe Mashinostroenie), 1985, 21, 331-335.	0.1	0
64	Hydraulically sectioned columnar extractor. Theoretical Foundations of Chemical Engineering, 2000, 34, 255-262.	0.2	0
65	Studying the Effect of Recycling on the Semibatch Process of the Extraction Separation of Components in a Multistage Loop. Theoretical Foundations of Chemical Engineering, 2020, 54, 1107-1110.	0.2	0
66	Intermittent sample loading technique as a tool for obtaining high- concentration elution bands in recycling liquid-liquid chromatography: Theoretical study of periodic and semi-continuous separation processes. Journal of Chromatography A, 2022, 1676, 463263.	1.8	0
67	Analysis of Extraction Separation in a Cascade of Mixing-Settling Extractors in a Recirculation Liquid-Liquid Chromatography Mode. Theoretical Foundations of Chemical Engineering, 2022, 56, 321-330.	0.2	0