John T Prince

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2308327/publications.pdf

Version: 2024-02-01

		430874	434195
36	1,244	18	31
papers	citations	h-index	g-index
36	36	36	2668
all docs	docs citations	times ranked	citing authors

#	Article	IF	Citations
1	Chromatographic Alignment of ESI-LC-MS Proteomics Data Sets by Ordered Bijective Interpolated Warping. Analytical Chemistry, 2006, 78, 6140-6152.	6.5	219
2	The need for a public proteomics repository. Nature Biotechnology, 2004, 22, 471-472.	17.5	157
3	LC-MS alignment in theory and practice: a comprehensive algorithmic review. Briefings in Bioinformatics, 2015, 16, 104-117.	6.5	96
4	Metabolic-Stress-Induced Rearrangement of the 14-3-3ζ Interactome Promotes Autophagy via a ULK1- and AMPK-Regulated 14-3-3ζ Interaction with Phosphorylated Atg9. Molecular and Cellular Biology, 2014, 34, 4379-4388.	2.3	93
5	Mitochondrial fission mediates ceramide-induced metabolic disruption in skeletal muscle. Biochemical Journal, 2013, 456, 427-439.	3.7	66
6	Mass spectrometry of the <i>M. smegmatis</i> proteome: Protein expression levels correlate with function, operons, and codon bias. Genome Research, 2005, 15, 1118-1126.	5.5	64
7	Integrating shotgun proteomics and mRNA expression data to improve protein identification. Bioinformatics, 2009, 25, 1397-1403.	4.1	59
8	Proteomics, lipidomics, metabolomics: a mass spectrometry tutorial from a computer scientist's point of view. BMC Bioinformatics, 2014, 15, S9.	2.6	56
9	Structures of the Gβ-CCT and PhLP1–Gβ-CCT complexes reveal a mechanism for G-protein β-subunit folding and Gβγ dimer assembly. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 2413-2418.	7.1	49
10	Massifquant: open-source Kalman filter-based XC-MS isotope trace feature detection. Bioinformatics, 2014, 30, 2636-2643.	4.1	39
11	The Genomes, Proteomes, and Structures of Three Novel Phages That Infect the Bacillus cereus Group and Carry Putative Virulence Factors. Journal of Virology, 2014, 88, 11846-11860.	3.4	37
12	A fast coarse filtering method for peptide identification by mass spectrometry. Bioinformatics, 2006, 22, 1524-1531.	4.1	36
13	Novel algorithms and the benefits of comparative validation. Bioinformatics, 2013, 29, 1583-1585.	4.1	32
14	Sequence and Structural Characterization of Great Salt Lake Bacteriophage CW02, a Member of the T7-Like Supergroup. Journal of Virology, 2012, 86, 7907-7917.	3.4	31
15	Programmed Cell Death Protein 5 Interacts with the Cytosolic Chaperonin Containing Tailless Complex Polypeptide 1 (CCT) to Regulate \hat{l}^2 -Tubulin Folding. Journal of Biological Chemistry, 2014, 289, 4490-4502.	3.4	31
16	AICAR inhibits ceramide biosynthesis in skeletal muscle. Diabetology and Metabolic Syndrome, 2012, 4, 45.	2.7	25
17	mspire: mass spectrometry proteomics in Ruby. Bioinformatics, 2008, 24, 2796-2797.	4.1	23
18	Metriculator: quality assessment for mass spectrometry-based proteomics. Bioinformatics, 2013, 29, 2948-2949.	4.1	20

#	Article	IF	CITATIONS
19	Mspire-Simulator: LC-MS Shotgun Proteomic Simulator for Creating Realistic Gold Standard Data. Journal of Proteome Research, 2013, 12, 5742-5749.	3.7	20
20	Controlling for confounding variables in MS-omics protocol: why modularity matters. Briefings in Bioinformatics, 2014, 15, 768-770.	6.5	14
21	A comprehensive protein–protein interactome for yeast PAS kinase 1 reveals direct inhibition of respiration through the phosphorylation of Cbf1. Molecular Biology of the Cell, 2014, 25, 2199-2215.	2.1	13
22	JAMSS: proteomics mass spectrometry simulation in Java. Bioinformatics, 2015, 31, 791-793.	4.1	10
23	Yersinia pseudotuberculosis BarA-UvrY Two-Component Regulatory System Represses Biofilms via CsrB. Frontiers in Cellular and Infection Microbiology, 2018, 8, 323.	3.9	9
24	Rubabel: wrapping open Babel with Ruby. Journal of Cheminformatics, 2013, 5, 35.	6.1	8
25	Current controlled vocabularies are insufficient to uniquely map molecular entities to mass spectrometry signal. BMC Bioinformatics, 2015, 16, S2.	2.6	8
26	Statistical agglomeration: peak summarization for direct infusion lipidomics. Bioinformatics, 2013, 29, 2445-2451.	4.1	7
27	Whole blood and urine bioactive Hepcidin-25 determination using liquid chromatography mass spectrometry. Analytical Biochemistry, 2017, 517, 23-30.	2.4	6
28	Imbalanced sphingolipid signaling is maintained as a core proponent of a cancerous phenotype in spite of metabolic pressure and epigenetic drift. Oncotarget, 2019, 10, 449-479.	1.8	6
29	The Case of the Disappearing Drug Target. Molecular Cell, 2010, 37, 455-456.	9.7	5
30	Automated structural classification of lipids by machine learning. Bioinformatics, 2015, 31, 621-625.	4.1	3
31	Probabilistic Generation of Mass Spectrometry Molecular Abundance Variance for Case and Control Replicates. Journal of Proteome Research, 2017, 16, 2429-2434.	3.7	2
32	In Vitro Oxidation of Snap-25 Leads to Double Disulfide Bond Formation and Protein Destabilization. Biophysical Journal, 2013, 104, 622a.	0.5	0
33	Resolving double disulfide bond patterns in SNAP25B using liquid chromatography–ion trap mass spectrometry. Journal of Mass Spectrometry, 2013, 48, 660-668.	1.6	O
34	Oxidation of SNAP25â€6yntaxin complex reduce its stability and prevents refolding. FASEB Journal, 2012, 26, 692.6.	0.5	0
35	Programmed cell death protein 5 may exert its apoptotic function through CCT. FASEB Journal, 2013, 27, 784.8.	0.5	О
36	Structures of the Gâ€beta–CCT and PhLP1–Gâ€beta–CCT complexes reveal a molecular mechanism for G protein beta subunit folding and betaâ€gamma dimer assembly. FASEB Journal, 2013, 27, 1040.4.	0.5	O