
Lisa Barsotti

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2307802/publications.pdf Version: 2024-02-01

LIGA RADSOTTI

#	Article	IF	CITATIONS
1	Observation of Gravitational Waves from a Binary Black Hole Merger. Physical Review Letters, 2016, 116, 061102.	2.9	8,753
2	GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. Physical Review Letters, 2017, 119, 161101.	2.9	6,413
3	Multi-messenger Observations of a Binary Neutron Star Merger [*] . Astrophysical Journal Letters, 2017, 848, L12.	3.0	2,805
4	GW151226: Observation of Gravitational Waves from a 22-Solar-Mass Binary Black Hole Coalescence. Physical Review Letters, 2016, 116, 241103.	2.9	2,701
5	GWTC-1: A Gravitational-Wave Transient Catalog of Compact Binary Mergers Observed by LIGO and Virgo during the First and Second Observing Runs. Physical Review X, 2019, 9, .	2.8	2,022
6	GW170104: Observation of a 50-Solar-Mass Binary Black Hole Coalescence at Redshift 0.2. Physical Review Letters, 2017, 118, 221101.	2.9	1,987
7	Advanced LIGO. Classical and Quantum Gravity, 2015, 32, 074001.	1.5	1,929
8	GW170814: A Three-Detector Observation of Gravitational Waves from a Binary Black Hole Coalescence. Physical Review Letters, 2017, 119, 141101.	2.9	1,600
9	GWTC-2: Compact Binary Coalescences Observed by LIGO and Virgo during the First Half of the Third Observing Run. Physical Review X, 2021, 11, .	2.8	1,097
10	GW190425: Observation of a Compact Binary Coalescence with Total MassÂâ^1⁄4Â3.4 M _⊙ . Astrophysical Journal Letters, 2020, 892, L3.	3.0	1,049
11	Characterization of the LIGO detectors during their sixth science run. Classical and Quantum Gravity, 2015, 32, 115012.	1.5	1,029
12	LIGO: the Laser Interferometer Gravitational-Wave Observatory. Reports on Progress in Physics, 2009, 72, 076901.	8.1	971
13	GW170608: Observation of a 19 Solar-mass Binary Black Hole Coalescence. Astrophysical Journal Letters, 2017, 851, L35.	3.0	968
14	Binary Black Hole Mergers in the First Advanced LIGO Observing Run. Physical Review X, 2016, 6, .	2.8	898
15	Enhanced sensitivity of the LIGO gravitational wave detector by using squeezed states of light. Nature Photonics, 2013, 7, 613-619.	15.6	825
16	Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA. Living Reviews in Relativity, 2018, 21, 3.	8.2	808
17	Exploring the sensitivity of next generation gravitational wave detectors. Classical and Quantum Gravity, 2017, 34, 044001.	1.5	735
18	GW150914: The Advanced LIGO Detectors in the Era of First Discoveries. Physical Review Letters, 2016, 116, 131103.	2.9	466

LISA BARSOTTI

#	Article	IF	CITATIONS
19	Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA. Living Reviews in Relativity, 2020, 23, 3.	8.2	447
20	Properties and Astrophysical Implications of the 150 M _⊙ Binary Black Hole Merger GW190521. Astrophysical Journal Letters, 2020, 900, L13.	3.0	406
21	GW190412: Observation of a binary-black-hole coalescence with asymmetric masses. Physical Review D, 2020, 102, .	1.6	394
22	Quantum-Enhanced Advanced LIGO Detectors in the Era of Gravitational-Wave Astronomy. Physical Review Letters, 2019, 123, 231107.	2.9	359
23	Sensitivity of the Advanced LIGO detectors at the beginning of gravitational wave astronomy. Physical Review D, 2016, 93, .	1.6	286
24	Sensitivity and performance of the Advanced LIGO detectors in the third observing run. Physical Review D, 2020, 102, .	1.6	196
25	Search for gravitational waves from low mass compact binary coalescence in LIGO's sixth science run and Virgo's science runs 2 and 3. Physical Review D, 2012, 85, .	1.6	185
26	SEARCHES FOR GRAVITATIONAL WAVES FROM KNOWN PULSARS WITH SCIENCE RUN 5 LIGO DATA. Astrophysical Journal, 2010, 713, 671-685.	1.6	155
27	Gravitational wave detector with cosmological reach. Physical Review D, 2015, 91, .	1.6	137
28	LIGO detector characterization in the second and third observing runs. Classical and Quantum Gravity, 2021, 38, 135014.	1.5	128
29	Prospects for doubling the range of Advanced LIGO. Physical Review D, 2015, 91, .	1.6	126
30	A cryogenic silicon interferometer for gravitational-wave detection. Classical and Quantum Gravity, 2020, 37, 165003.	1.5	120
31	Virgo status. Classical and Quantum Gravity, 2008, 25, 184001.	1.5	116
32	Quantum correlations between light and the kilogram-mass mirrors of LIGO. Nature, 2020, 583, 43-47.	13.7	102
33	Frequency-Dependent Squeezing for Advanced LIGO. Physical Review Letters, 2020, 124, 171102.	2.9	99
34	Design and development of the advanced LIGO monolithic fused silica suspension. Classical and Quantum Gravity, 2012, 29, 035003.	1.5	88
35	Observation of Parametric Instability in Advanced LIGO. Physical Review Letters, 2015, 114, 161102.	2.9	87
36	Realistic filter cavities for advanced gravitational wave detectors. Physical Review D, 2013, 88, .	1.6	86

LISA BARSOTTI

#	Article	IF	CITATIONS
37	Audio-Band Frequency-Dependent Squeezing for Gravitational-Wave Detectors. Physical Review Letters, 2016, 116, 041102.	2.9	77
38	Squeezed vacuum states of light for gravitational wave detectors. Reports on Progress in Physics, 2019, 82, 016905.	8.1	74
39	Calibration of the Advanced LIGO detectors for the discovery of the binary black-hole merger GW150914. Physical Review D, 2017, 95, .	1.6	72
40	Low-latency Gravitational-wave Alerts for Multimessenger Astronomy during the Second Advanced LIGO and Virgo Observing Run. Astrophysical Journal, 2019, 875, 161.	1.6	71
41	Decoherence and degradation of squeezed states in quantum filter cavities. Physical Review D, 2014, 90, .	1.6	66
42	Gravitational-wave Constraints on the Equatorial Ellipticity of Millisecond Pulsars. Astrophysical Journal Letters, 2020, 902, L21.	3.0	65
43	Squeezed quadrature fluctuations in a gravitational wave detector using squeezed light. Optics Express, 2013, 21, 19047.	1.7	61
44	Approaching the motional ground state of a 10-kg object. Science, 2021, 372, 1333-1336.	6.0	59
45	Squeezed light for advanced gravitational wave detectors and beyond. Optics Express, 2014, 22, 21106.	1.7	56
46	Loss in long-storage-time optical cavities. Optics Express, 2013, 21, 30114.	1.7	52
47	Ultra-low phase noise squeezed vacuum source for gravitational wave detectors. Optica, 2016, 3, 682.	4.8	52
48	Alignment sensing and control in advanced LIGO. Classical and Quantum Gravity, 2010, 27, 084026.	1.5	49
49	A general approach to optomechanical parametric instabilities. Physics Letters, Section A: General, Atomic and Solid State Physics, 2010, 374, 665-671.	0.9	47
50	All-sky search for continuous gravitational waves from isolated neutron stars in the early O3 LIGO data. Physical Review D, 2021, 104, .	1.6	42
51	Environmental noise in advanced LIGO detectors. Classical and Quantum Gravity, 2021, 38, 145001.	1.5	38
52	Gravitational-wave physics with Cosmic Explorer: Limits to low-frequency sensitivity. Physical Review D, 2021, 103, .	1.6	37
53	Angular control of optical cavities in a radiation-pressure-dominated regime: the Enhanced LIGO case. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2013, 30, 2618.	0.8	33
54	The VIRGO large mirrors: a challenge for low loss coatings. Classical and Quantum Gravity, 2004, 21, S935-S945.	1.5	30

LISA BARSOTTI

#	Article	IF	CITATIONS
55	Impact of backscattered light in a squeezing-enhanced interferometric gravitational-wave detector. Classical and Quantum Gravity, 2014, 31, 035017.	1.5	21
56	Search of the early O3 LIGO data for continuous gravitational waves from the Cassiopeia A and Vela Jr. supernova remnants. Physical Review D, 2022, 105, .	1.6	21
57	First joint observation by the underground gravitational-wave detector KAGRA with GEO 600. Progress of Theoretical and Experimental Physics, 2022, 2022, .	1.8	20
58	LIGOâ $€$ ™s quantum response to squeezed states. Physical Review D, 2021, 104, .	1.6	19
59	Quantum correlation measurements in interferometric gravitational-wave detectors. Physical Review A, 2017, 95, .	1.0	16
60	Tuning Advanced LIGO to kilohertz signals from neutron-star collisions. Physical Review D, 2021, 103, .	1.6	14
61	Effect of squeezing on parameter estimation of gravitational waves emitted by compact binary systems. Physical Review D, 2015, 91, .	1.6	11
62	Optimal detuning for quantum filter cavities. Physical Review D, 2020, 102, .	1.6	7
63	Demonstration of an amplitude filter cavity at gravitational-wave frequencies. Physical Review D, 2020, 102, .	1.6	5
64	Low phase noise squeezed vacuum for future generation gravitational wave detectors. Classical and Quantum Gravity, 2020, 37, 185014.	1.5	5
65	Point Absorber Limits to Future Gravitational-Wave Detectors. Physical Review Letters, 2021, 127, 241102.	2.9	3
66	Probing squeezing for gravitational-wave detectors with an audio-band field. Physical Review D, 2022, 105, .	1.6	3
67	Progress and challenges in advanced ground-based gravitational-wave detectors. General Relativity and Gravitation, 2014, 46, 1.	0.7	2
68	Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA. , 2018, 21, 1.		2
69	Advanced LIGO squeezer platform for backscattered light and optical loss reduction. Classical and Quantum Gravity, 2020, 37, 215015.	1.5	2
70	Quantum Noise Reduction in the LIGO Gravitational Wave Interferometer with Squeezed States of Light. , 2014, , .		0