Ricardo Santamaria

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/2307538/ricardo-santamaria-publications-by-year.pdf

Version: 2024-04-19

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

139 5,255 37 67 g-index

139 5,767 7.1 5.47 ext. papers ext. citations avg, IF L-index

#	Paper	IF	Citations
139	Waste-polystyrene foams-derived magnetic carbon material for adsorption and redox supercapacitor applications. <i>Journal of Cleaner Production</i> , 2021 , 313, 127903	10.3	6
138	Unraveling the relevance of carbon felts surface modification during electrophoretic deposition of nanocarbons on their performance as electrodes for the VO2+/VO2+ redox couple. <i>Applied Surface Science</i> , 2021 , 569, 151095	6.7	2
137	Insights on the Behavior of Imidazolium Ionic Liquids as Electrolytes in Carbon-Based Supercapacitors: An Applied Electrochemical Approach. <i>Journal of Physical Chemistry C</i> , 2020 , 124, 1581	કે . 158:	3d ^O
136	No genome-wide DNA methylation changes found associated with medium-term reduced graphene oxide exposure in human lung epithelial cells. <i>Epigenetics</i> , 2020 , 15, 283-293	5.7	2
135	Discussion on Operational Voltage and Efficiencies of Ionic-Liquid-Based Electrochemical Capacitors. <i>Journal of Physical Chemistry C</i> , 2019 , 123, 8541-8549	3.8	18
134	A highly adhesive PIL/IL gel polymer electrolyte for use in flexible solid state supercapacitors. <i>Electrochimica Acta</i> , 2019 , 299, 789-799	6.7	39
133	LiFePO4/Mesoporous Carbon Hybrid Supercapacitor Based on LiTFSI/Imidazolium Ionic Liquid Electrolyte. <i>Journal of Physical Chemistry C</i> , 2018 , 122, 1456-1465	3.8	22
132	Mechanism and Stability of a Redox Supercapacitor Based on Methylene Blue: Effects of Degradation of the Redox Shuttle. <i>ACS Applied Energy Materials</i> , 2018 , 1, 2306-2316	6.1	12
131	High value activated carbons from waste polystyrene foams. <i>Microporous and Mesoporous Materials</i> , 2018 , 267, 181-184	5.3	32
130	Influence of the electrophoretic deposition parameters on the formation of suspended graphene-based films. <i>Materials and Design</i> , 2018 , 160, 58-64	8.1	10
129	Morphological changes in graphene materials caused by solvents. <i>Colloids and Surfaces A: Physicochemical and Engineering Aspects</i> , 2018 , 558, 73-79	5.1	9
128	Unusual flexibility of mesophase pitch-derived carbon materials: An approach to the synthesis of graphene. <i>Carbon</i> , 2017 , 115, 539-545	10.4	22
127	Spark plasma sintered BaTiO 3 /graphene composites for thermoelectric applications. <i>Journal of the European Ceramic Society</i> , 2017 , 37, 3741-3746	6	16
126	Peculiarities of the production of graphene oxides with controlled properties from industrial coal liquids. <i>Fuel</i> , 2017 , 203, 253-260	7.1	8
125	Role of quinoline insoluble particles during the processing of coal tars to produce graphene materials. <i>Fuel</i> , 2017 , 206, 99-106	7.1	14
124	Experimental and Statistical Optimization of the Tensile Strength of Carbon Fibers from Pitches with Different Composition. <i>Industrial & Engineering Chemistry Research</i> , 2017 , 56, 3243-3250	3.9	3
123	Biliquid Supercapacitors: a Simple and New Strategy to Enhance Energy Density in Asymmetric/Hybrid Devices. <i>Electrochimica Acta</i> , 2017 , 254, 384-392	6.7	13

(2014-2017)

122	Outstanding electrochemical performance of a graphene-modified graphite felt for vanadium redox flow battery application. <i>Journal of Power Sources</i> , 2017 , 338, 155-162	8.9	81
121	Influence of the carbonization temperature on the mechanical properties of thermoplastic polymer derived C/C-SiC composites. <i>Journal of the European Ceramic Society</i> , 2017 , 37, 523-529	6	26
120	Enhancing energy density of carbon-based supercapacitors using Prussian Blue modified positive electrodes. <i>Electrochimica Acta</i> , 2016 , 212, 848-855	6.7	23
119	Enhancement of the rate performance of plasma-treated platelet carbon nanofiber anodes in lithium-ion batteries. <i>RSC Advances</i> , 2016 , 6, 4810-4817	3.7	1
118	Cokes of different origin as precursors of graphene oxide. <i>Fuel</i> , 2016 , 166, 400-403	7.1	26
117	Optimization of a carbon-based hybrid energy storage device with cerium (III) sulfate as redox electrolyte. <i>Journal of Power Sources</i> , 2016 , 309, 50-55	8.9	5
116	Graphene anchored palladium complex as efficient and recyclable catalyst in the Heck cross-coupling reaction. <i>Journal of Molecular Catalysis A</i> , 2016 , 416, 140-146		37
115	C4F8 plasma treatment as an effective route for improving rate performance of natural/synthetic graphite anodes in lithium ion batteries. <i>Carbon</i> , 2016 , 103, 28-35	10.4	26
114	New alternatives to graphite for producing graphene materials. <i>Carbon</i> , 2015 , 93, 812-818	10.4	28
113	CO2 adsorption capacity and kinetics in nitrogen-enriched activated carbon fibers prepared by different methods. <i>Chemical Engineering Journal</i> , 2015 , 281, 704-712	14.7	52
112	Enhanced energy density of carbon-based supercapacitors using Cerium (III) sulphate as inorganic redox electrolyte. <i>Electrochimica Acta</i> , 2015 , 168, 277-284	6.7	29
111	Tuning graphene properties by a multi-step thermal reduction process. <i>Carbon</i> , 2015 , 90, 160-163	10.4	19
110	An approach to classification and capacitance expressions in electrochemical capacitors technology. <i>Physical Chemistry Chemical Physics</i> , 2015 , 17, 1084-92	3.6	143
109	A novel approach for the production of chemically activated carbon fibers. <i>Chemical Engineering Journal</i> , 2015 , 260, 463-468	14.7	31
108	N-enriched ACF from coal-based pitch blended with urea-based resin for CO2 capture. <i>Microporous and Mesoporous Materials</i> , 2015 , 201, 10-16	5.3	19
107	Dielectric behavior of ceramic-graphene composites around the percolation threshold. <i>Nanoscale Research Letters</i> , 2015 , 10, 216	5	16
106	Graphite felt modified with bismuth nanoparticles as negative electrode in a vanadium redox flow battery. <i>ChemSusChem</i> , 2014 , 7, 914-8	8.3	85
105	Activated carbon fibers prepared directly from stabilized fibers for use as electrodes in supercapacitors. <i>Materials Letters</i> , 2014 , 136, 214-217	3.3	24

104	A multi-step exfoliation approach to maintain the lateral size of graphene oxide sheets. <i>Carbon</i> , 2014 , 80, 830-832	10.4	12
103	Evaluating capacitive deionization for water desalination by direct determination of chloride ions. <i>Desalination</i> , 2014 , 344, 396-401	10.3	7
102	Graphene materials with different structures prepared from the same graphite by the Hummers and Brodie methods. <i>Carbon</i> , 2013 , 65, 156-164	10.4	272
101	Surface area measurement of graphene oxide in aqueous solutions. <i>Langmuir</i> , 2013 , 29, 13443-8	4	155
100	Optimization of the size and yield of graphene oxide sheets in the exfoliation step. <i>Carbon</i> , 2013 , 63, 576-578	10.4	70
99	Correct use of the LangmuirHinshelwood equation for proving the absence of a synergy effect in the photocatalytic degradation of phenol on a suspended mixture of titania and activated carbon. <i>Carbon</i> , 2013 , 55, 62-69	10.4	117
98	Graphite oxide-based graphene materials as positive electrodes in vanadium redox flow batteries. Journal of Power Sources, 2013 , 241, 349-354	8.9	44
97	Thermally reduced graphite and graphene oxides in VRFBs. <i>Nano Energy</i> , 2013 , 2, 1322-1328	17.1	33
96	Critical temperatures in the synthesis of graphene-like materials by thermal exfoliation eduction of graphite oxide. <i>Carbon</i> , 2013 , 52, 476-485	10.4	188
95	119Sn MBsbauer spectroscopy analysis of Sntot composites prepared from a Fuel Oil Pyrolysis precursor as anodes for Li-ion batteries. <i>Materials Chemistry and Physics</i> , 2013 , 138, 747-754	4.4	4
94	Voltage dependence of carbon-based supercapacitors for pseudocapacitance quantification. <i>Electrochimica Acta</i> , 2013 , 95, 225-229	6.7	29
93	An insight into the polymerization of anthracene oil to produce pitch using nuclear magnetic resonance. <i>Fuel</i> , 2013 , 105, 471-476	7.1	25
92	Characterisation and feasibility as carbon fibre precursors of isotropic pitches derived from anthracene oil. <i>Fuel</i> , 2012 , 101, 9-15	7.1	28
91	Supercapacitor modified with methylene blue as redox active electrolyte. <i>Electrochimica Acta</i> , 2012 , 83, 241-246	6.7	130
90	Carbon nanowalls thin films as nanostructured electrode materials in vanadium redox flow batteries. <i>Nano Energy</i> , 2012 , 1, 833-839	17.1	62
89	The effect of the parent graphite on the structure of graphene oxide. <i>Carbon</i> , 2012 , 50, 275-282	10.4	165
88	Thermally reduced graphite oxide as positive electrode in Vanadium Redox Flow Batteries. <i>Carbon</i> , 2012 , 50, 828-834	10.4	115
87	Further studies on the use of Raman spectroscopy and X-ray diffraction for the characterisation of TiC-containing carbonBarbon composites. <i>Carbon</i> , 2012 , 50, 3240-3246	10.4	10

86	Novel coal-based precursors for cokes with highly oriented microstructures. Fuel, 2012, 95, 400-406	7.1	8
85	Optimisation of the melt-spinning of anthracene oil-based pitch for isotropic carbon fibre preparation. <i>Fuel Processing Technology</i> , 2012 , 93, 99-104	7.2	42
84	Mechanisms of Energy Storage in Carbon-Based Supercapacitors Modified with a Quinoid Redox-Active Electrolyte. <i>Journal of Physical Chemistry C</i> , 2011 , 115, 17606-17611	3.8	241
83	High performance activated carbon for benzene/toluene adsorption from industrial wastewater. Journal of Hazardous Materials, 2011 , 192, 1525-32	12.8	42
82	Enhanced performance of a Bi-modified graphite felt as the positive electrode of a vanadium redox flow battery. <i>Electrochemistry Communications</i> , 2011 , 13, 1379-1382	5.1	141
81	Carbon materials as electrodes for electrosorption of NaCl in aqueous solutions. <i>Adsorption</i> , 2011 , 17, 467-471	2.6	30
80	Towards a further generation of high-energy carbon-based capacitors by using redox-active electrolytes. <i>Angewandte Chemie - International Edition</i> , 2011 , 50, 1699-701	16.4	343
79	Influence of titanium carbide on the interlaminar shear strength of carbon fibre laminate composites. <i>Composites Science and Technology</i> , 2011 , 71, 101-106	8.6	1
78	Redox-active electrolyte for carbon nanotube-based electric double layer capacitors. <i>Electrochimica Acta</i> , 2011 , 56, 3401-3405	6.7	143
77	A unified process for preparing mesophase and isotropic material from anthracene oil-based pitch. <i>Fuel Processing Technology</i> , 2011 , 92, 421-427	7.2	12
76	Synthesis of activated carbons by chemical activation of new anthracene oil-based pitches and their optimization by response surface methodology. <i>Fuel Processing Technology</i> , 2011 , 92, 1987-1992	7.2	13
75	Behaviour of Ti-doped CFCs under thermal fatigue tests. Fusion Engineering and Design, 2011, 86, 121-1	2 £7	4
74	. Energy & Fuels, 2010 , 24, 3422-3428	4.1	49
73	Capacitive Deionization of NaCl Solutions with Modified Activated Carbon Electrodes <i>Energy</i> & Energy	4.1	80
72	Improvement of thermal conductivity in 2D carbon@arbon composites by doping with TiC nanoparticles. <i>Materials Chemistry and Physics</i> , 2010 , 122, 102-107	4.4	16
71	Capacitance Evolution of Electrochemical Capacitors with Tailored Nanoporous Electrodes in Pure and Dissolved Ionic Liquids. <i>Fuel Cells</i> , 2010 , 10, 834-839	2.9	14
70	Oxidation behaviour of magnesialarbon materials prepared with petroleum pitch as binder. <i>Journal of Analytical and Applied Pyrolysis</i> , 2010 , 88, 207-212	6	8
69	The effect of the substrate on pitch wetting behaviour. <i>Fuel Processing Technology</i> , 2010 , 91, 1373-137	77.2	21

68	Evaluation of novel Ti-doped 3D carbonDarbon composites under transient thermal loads. <i>Fusion Engineering and Design</i> , 2010 , 85, 813-818	1.7	
67	Effect of oxidation on the performance of low-temperature petroleum cokes as anodes in lithium ion batteries. <i>Journal of Applied Electrochemistry</i> , 2009 , 39, 899-906	2.6	1
66	Development of titanium-doped carbonBarbon composites. <i>Journal of Materials Science</i> , 2009 , 44, 2525	-4532	7
65	Thermal curing of mesophase pitch: An alternative to oxidative stabilisation for the development of carbon composites. <i>Journal of Analytical and Applied Pyrolysis</i> , 2009 , 86, 28-32	6	6
64	Long-term cycling of carbon-based supercapacitors in aqueous media. <i>Electrochimica Acta</i> , 2009 , 54, 4481-4486	6.7	83
63	An activated carbon monolith as an electrode material for supercapacitors. <i>Carbon</i> , 2009 , 47, 195-200	10.4	140
62	Preparation of low toxicity pitches by thermal oxidative condensation of anthracene oil. <i>Environmental Science & Environmental Science & Environmenta</i>	10.3	28
61	Behaviour of Ti-doped 3D carbon fibre composites under intense thermal shock tests. <i>Physica Scripta</i> , 2009 , T138, 014055	2.6	3
60	Mesophase from Anthracene Oil-Based Pitches. Energy & Samp; Fuels, 2008, 22, 4146-4150	4.1	21
59	A study of Faradaic phenomena in activated carbon by means of macroelectrodes and single particle electrodes. <i>Journal of Electroanalytical Chemistry</i> , 2008 , 618, 33-38	4.1	5
58	Structural changes during pitch-based carbon granular composites carbonisation. <i>Journal of Materials Science</i> , 2008 , 43, 906-921	4.3	4
57	The effect of graphite addition on the mechanical and tribological properties of pitch-based granular carbon composites. <i>Journal of Materials Science</i> , 2008 , 43, 4541-4549	4.3	5
56	Effect of the thermal treatment of carbon-based electrodes on the electrochemical performance of supercapacitors. <i>Journal of Electroanalytical Chemistry</i> , 2008 , 618, 17-23	4.1	20
55	Enhanced life-cycle supercapacitors by thermal treatment of mesophase-derived activated carbons. <i>Electrochimica Acta</i> , 2008 , 54, 305-310	6.7	49
54	Carbon molecular sieves as model active electrode materials in supercapacitors. <i>Microporous and Mesoporous Materials</i> , 2008 , 110, 431-435	5.3	25
53	TinBarbon composites as anodic material in Li-ion batteries obtained by copyrolysis of petroleum vacuum residue and SnO2. <i>Carbon</i> , 2007 , 45, 1396-1409	10.4	27
52	An insight into Faradaic phenomena in activated carbon investigated by means of the microelectrode technique. <i>Electrochemistry Communications</i> , 2007 , 9, 2320-2324	5.1	4
51	An insight into pitch/substrate wetting behaviour. The effect of the substrate processing temperature on pitch wetting capacity. <i>Fuel</i> , 2007 , 86, 1046-1052	7.1	17

(2004-2007)

50	Effects of thermal treatment of activated carbon on the electrochemical behaviour in supercapacitors. <i>Electrochimica Acta</i> , 2007 , 52, 4969-4973	6.7	148
49	Influence of electrode preparation on the electrochemical behaviour of carbon-based supercapacitors. <i>Journal of Applied Electrochemistry</i> , 2007 , 37, 717-721	2.6	37
48	Influence of the oxidative stabilisation treatment time on the electrochemical performance of anthracene oils cokes as electrode materials for lithium batteries. <i>Journal of Power Sources</i> , 2006 , 161, 1324-1334	8.9	8
47	Chemical activation of carbon mesophase pitches. <i>Journal of Colloid and Interface Science</i> , 2006 , 298, 341-7	9.3	43
46	Electrochemical improvement of low-temperature petroleum cokes by chemical oxidation with H2O2 for their use as anodes in lithium ion batteries. <i>Electrochimica Acta</i> , 2006 , 52, 1281-1289	6.7	6
45	Activated carbon produced from Sasol-Lurgi gasifier pitch and its application as electrodes in supercapacitors. <i>Carbon</i> , 2006 , 44, 441-446	10.4	75
44	IronBarbon composites as electrode materials in lithium batteries. <i>Carbon</i> , 2006 , 44, 1762-1772	10.4	18
43	Influence of mesophase activation conditions on the specific capacitance of the resulting carbons. <i>Journal of Power Sources</i> , 2006 , 156, 719-724	8.9	21
42	Lignocellulose/pitch based composites. <i>Composites Part A: Applied Science and Manufacturing</i> , 2005 , 36, 649-657	8.4	9
41	Thermal degradation of lignocellulosic materials treated with several acids. <i>Journal of Analytical and Applied Pyrolysis</i> , 2005 , 74, 337-343	6	18
40	Pyrolysis behaviour of pitches modified with different additives. <i>Journal of Analytical and Applied Pyrolysis</i> , 2005 , 73, 276-283	6	16
39	Pitch/coke wetting behaviour. <i>Fuel</i> , 2005 ,	7.1	4
38	Preparation and characterisation of pitch-based granular composites to be used in tribological applications. <i>Wear</i> , 2005 , 258, 1706-1716	3.5	5
37	Composite electrode materials for lithium-ion batteries obtained by metal oxide addition to petroleum vacuum residua. <i>Carbon</i> , 2005 , 43, 923-936	10.4	10
36	Influence of oxidative stabilization on the electrochemical behaviour of coal tar pitch derived carbons in lithium batteries. <i>Electrochimica Acta</i> , 2005 , 50, 1225-1232	6.7	18
35	Effect of oxidative stabilization on the electrochemical performance of carbon mesophases as electrode materials for lithium batteries. <i>Journal of Solid State Electrochemistry</i> , 2005 , 9, 627-633	2.6	5
34	The influence of processing temperature on the structure and properties of mesophase-based polygranular graphites. <i>Journal of Materials Science</i> , 2004 , 39, 1213-1220	4.3	15
33	Improvement of the thermal stability of lignocellulosic materials by treatment with sulphuric acid and potassium hydroxide. <i>Journal of Analytical and Applied Pyrolysis</i> , 2004 , 72, 131-139	6	20

32	A thermoanalytical study of the co-pyrolysis of coal-tar pitch and petroleum pitch. Fuel, 2004, 83, 1257-	1 /2 .65	57
31	Preparation of pitch-based carbonflopper composites for electrical applications. <i>Fuel</i> , 2004 , 83, 1625-16	3 ,41	25
30	Monitoring coal-tar pitch composition changes during air-blowing by gas chromatography. <i>Journal of Chromatography A</i> , 2004 , 1026, 231-8	4.5	13
29	Influence of Granular Carbons on the Thermal Reactivity of Pitches. <i>Energy & Camp; Fuels</i> , 2004 , 18, 22-29	4.1	3
28	Optimization of the preparation conditions of polygranular carbons from mesophase. <i>Journal of Materials Science</i> , 2003 , 38, 427-435	4.3	6
27	Pyrolysis behaviour of stabilized self-sintering mesophase. <i>Carbon</i> , 2003 , 41, 413-422	10.4	27
26	A novel method to obtain a petroleum-derived mesophase pitch suitable as carbon fibre precursor. <i>Carbon</i> , 2003 , 41, 445-452	10.4	34
25	Preventing mesophase growth in petroleum pitches by the addition of coal-tar pitch. <i>Carbon</i> , 2003 , 41, 1854-1857	10.4	11
24	Electrochemical, textural and microstructural effects of mechanical grinding on graphitized petroleum coke for lithium and sodium batteries. <i>Carbon</i> , 2003 , 41, 3003-3013	10.4	54
23	Mesophase development in petroleum and coal-tar pitches and their blends. <i>Journal of Analytical and Applied Pyrolysis</i> , 2003 , 68-69, 409-424	6	48
22	Relationship between chemical composition and pyrolysis behaviour of a medium temperature pitch (or Lurgi-gasifier pitch). <i>Fuel Processing Technology</i> , 2003 , 84, 63-77	7.2	14
21	The effect of the reinforcing carbon on the microstructure of pitch-based granular composites. Journal of Microscopy, 2003 , 209, 81-93	1.9	5
20	Influence of granular carbons on pitch properties?. Fuel, 2003, 82, 1241-1250	7.1	16
19	Pyrolysis behaviour of petroleum pitches prepared at different conditions. <i>Journal of Analytical and Applied Pyrolysis</i> , 2002 , 63, 223-239	6	23
18	Pyrolysis behaviour of mesophase and isotropic phases isolated from the same pitch. <i>Journal of Analytical and Applied Pyrolysis</i> , 2002 , 63, 251-265	6	17
17	On the chemistry of the oxidative stabilization and carbonization of carbonaceous mesophase. <i>Fuel</i> , 2002 , 81, 2061-2070	7.1	39
16	A study of pitch-based precursors for general purpose carbon fibres. <i>Carbon</i> , 2002 , 40, 2719-2725	10.4	61
15	Effects of Air-Blowing on the Molecular Size and Structure of Coal-Tar Pitch Components. <i>Energy & Energy Fuels</i> , 2002 , 16, 1540-1549	4.1	20

LIST OF PUBLICATIONS

14	Assessment of the oxidative stabilisation of carbonaceous mesophase by thermal analysis techniques. <i>Journal of Analytical and Applied Pyrolysis</i> , 2001 , 58-59, 911-926	6	15	
13	Influence of granular carbons on the pyrolysis behaviour of coal-tar pitches. <i>Journal of Analytical and Applied Pyrolysis</i> , 2001 , 58-59, 825-840	6	10	
12	Co-pyrolysis of an aromatic petroleum residue with triphenylsilane. <i>Carbon</i> , 2001 , 39, 1001-1011	10.4	11	
11	On the Chemical Composition of Thermally Treated Coal-Tar Pitches. <i>Energy & amp; Fuels</i> , 2001 , 15, 21	4-223	19	
10	Structural Characterization of High-Softening-Point Pitches By Oxidation with RuO4. <i>Energy & Energy & Enels</i> , 2001 , 15, 128-134	4.1	7	
9	A comparative study of air-blown and thermally treated coal-tar pitches. <i>Carbon</i> , 2000 , 38, 517-523	10.4	66	
8	Pitch-based carbon composites with granular reinforcements for frictional applications. <i>Carbon</i> , 2000 , 38, 1043-1051	10.4	25	
7	Separation and characterization of the isotropic phase and co-existing mesophase in thermally treated coal-tar pitches. <i>Carbon</i> , 2000 , 38, 1169-1176	10.4	18	
6	Microstructure and properties of pitch-based carbon composites. <i>Journal of Microscopy</i> , 1999 , 196, 21	3- 2 49	6	
5	Influence of pressure variations on the formation and development of mesophase in a petroleum residue. <i>Carbon</i> , 1999 , 37, 445-455	10.4	24	
4	Contribution of the isotropic phase to the rheology of partially anisotropic coal-tar pitches. <i>Carbon</i> , 1999 , 37, 1059-1064	10.4	14	
3	Pyrolysis of petroleum residues: I. Yields and product analyses. <i>Carbon</i> , 1999 , 37, 1567-1582	10.4	42	
2	A novel method for mesophase separation. <i>Carbon</i> , 1997 , 35, 1191-1193	10.4	19	
1	A new parameter relating the properties of semicokes and the resulting sintered carbons. <i>Carbon</i> , 1995 , 33, 1182-1184	10.4	2	