Manuel Guedel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2307231/publications.pdf

Version: 2024-02-01

17405 15,660 363 63 citations h-index papers

g-index 365 365 365 8087 docs citations times ranked citing authors all docs

23472

111

#	Article	IF	CITATIONS
1	Investigating the structure of star-forming regions using INDICATE. Monthly Notices of the Royal Astronomical Society, 2022, 510, 2864-2882.	1.6	7
2	Spi-OPS: <i>Spitzer</i> and CHEOPS confirm the near-polar orbit of MASCARA-1 b and reveal a hint of dayside reflection. Astronomy and Astrophysics, 2022, 658, A75.	2.1	25
3	A pair of sub-Neptunes transiting the bright K-dwarf TOI-1064 characterized with <i>CHEOPS</i> Monthly Notices of the Royal Astronomical Society, 2022, 511, 1043-1071.	1.6	30
4	Investigating the architecture and internal structure of the TOI-561 system planets with CHEOPS, HARPS-N, and TESS. Monthly Notices of the Royal Astronomical Society, 2022, 511, 4551-4571.	1.6	17
5	CHEOPS observations of the HD 108236 planetary system: a fifth planet, improved ephemerides, and planetary radii. Astronomy and Astrophysics, 2021, 646, A157.	2.1	47
6	Self-organized Criticality in Stellar Flares. Astrophysical Journal, 2021, 910, 41.	1.6	9
7	Gravitoviscous Protoplanetary Disks with a Dust Component. V. The Dynamic Model for Freeze-out and Sublimation of Volatiles. Astrophysical Journal, 2021, 910, 153.	1.6	9
8	Six transiting planets and a chain of Laplace resonances in TOI-178. Astronomy and Astrophysics, 2021, 649, A26.	2.1	94
9	XMM-Newton X-Ray Observations of the Unusual Wolf–Rayet Star WR 66. Research Notes of the AAS, 2021, 5, 125.	0.3	2
10	The active lives of stars: A complete description of the rotation and XUV evolution of F, G, K, and M dwarfs. Astronomy and Astrophysics, 2021, 649, A96.	2.1	92
11	The EBLM project – VIII. First results for M-dwarf mass, radius, and effective temperature measurements using <i>CHEOPS</i> light curves. Monthly Notices of the Royal Astronomical Society, 2021, 506, 306-322.	1.6	15
12	Exploiting timing capabilities of the CHEOPS mission with warm-Jupiter planets. Monthly Notices of the Royal Astronomical Society, 2021, 506, 3810-3830.	1.6	18
13	Transit detection of the long-period volatile-rich super-Earth $\hat{l}^{1/2}$ 2 Lupi d with CHEOPS. Nature Astronomy, 2021, 5, 775-787.	4.2	51
14	A search for transiting planets around hot subdwarfs. Astronomy and Astrophysics, 2021, 650, A205.	2.1	18
15	Interior heating and outgassing of Proxima Centauri b: Identifying critical parameters. Astronomy and Astrophysics, 2021, 651, A103.	2.1	10
16	The changing face of AU Mic b: stellar spots, spin-orbit commensurability, and transit timing variations as seen by CHEOPS and TESS. Astronomy and Astrophysics, 2021, 654, A159.	2.1	36
17	One Year in the Life of Young Suns: Data-constrained Corona-wind Model of κ ¹ Ceti. Astrophysical Journal, 2021, 916, 96.	1.6	15
18	CHEOPS precision phase curve of the Super-Earth 55 Cancri e. Astronomy and Astrophysics, 2021, 653, A173.	2.1	30

#	Article	IF	Citations
19	The young Sun's XUV-activity as a constraint for lower CO2-limits in the Earth's Archean atmosphere. Earth and Planetary Science Letters, 2021, 576, 117197.	1.8	23
20	Chandra X-Ray Observations of V830 Tau: A T Tauri Star Hosting an Evanescent Planet. Astrophysical Journal, 2021, 920, 22.	1.6	1
21	Impact of space weather on climate and habitability of terrestrial-type exoplanets. International Journal of Astrobiology, 2020, 19, 136-194.	0.9	125
22	X-Ray Emission and Disk Irradiation of HL Tau and HD 100546. Astrophysical Journal, 2020, 888, 15.	1.6	7
23	Constraining the early evolution of Venus and Earth through atmospheric Ar, Ne isotope and bulk K/U ratios. Icarus, 2020, 339, 113551.	1.1	47
24	Evolution of the Earth's Polar Outflow From Midâ€Archean to Present. Journal of Geophysical Research: Space Physics, 2020, 125, e2020JA027837.	0.8	10
25	GJ 357 b. Astronomy and Astrophysics, 2020, 641, A113.	2.1	6
26	The Sun Through Time. Space Science Reviews, 2020, 216, 143.	3.7	12
27	A <i>Swift</i> view of X-ray and UV radiation in the planet-forming TÂTauri system PDSÂ70. Monthly Notices of the Royal Astronomical Society: Letters, 2020, 491, L56-L60.	1.2	6
28	The solar wind from a stellar perspective. Astronomy and Astrophysics, 2020, 635, A178.	2.1	23
29	Thermal evolution of protoplanetary disks: from \hat{I}^2 -cooling to decoupled gas and dust temperatures. Astronomy and Astrophysics, 2020, 638, A102.	2.1	12
30	Accretion bursts in low-metallicity protostellar disks. Astronomy and Astrophysics, 2020, 641, A72.	2.1	10
31	The instrument control unit of the PLATO payload: design consolidation following the preliminary design review by ESA. , 2020, , .		0
32	Chandra Resolves the Double FU Orionis System RNO 1B/1C in X-Rays. Astronomical Journal, 2020, 159, 221.	1.9	2
33	Feedback of molecular outflows from protostars in NGC 1333 revealed by <i>Herschel</i> and <i>Spitzer</i> spectro-imaging observations. Astronomy and Astrophysics, 2020, 641, A36.	2.1	6
34	Consistent Dust and Gas Models for Protoplanetary Disks. III. Models for Selected Objects from the FP7 DIANA Project*. Publications of the Astronomical Society of the Pacific, 2019, 131, 064301.	1.0	58
35	Close-in Sub-Neptunes Reveal the Past Rotation History of Their Host Stars: Atmospheric Evolution of Planets in the HD 3167 and K2-32 Planetary Systems. Astrophysical Journal, 2019, 879, 26.	1.6	33
36	Infrared and sub-mm observations of outbursting young stars with <i>Herschel</i> and <i>Spitzer</i> . Astronomy and Astrophysics, 2019, 631, A30.	2.1	2

#	Article	IF	CITATIONS
37	Episodic excursions of low-mass protostars on the Hertzsprung–Russell diagram. Monthly Notices of the Royal Astronomical Society, 2019, 484, 146-160.	1.6	20
38	Chandra Observations of the Massive Star-forming Region Onsala 2. Astrophysical Journal, 2019, 871, 116.	1.6	7
39	Consistent dust and gas models for protoplanetary disks. Astronomy and Astrophysics, 2019, 625, A66.	2.1	20
40	Stellar activity and planetary atmosphere evolution in tight binary star systems. Astronomy and Astrophysics, 2019, 626, A22.	2.1	6
41	Modelling atmospheric escape and MgÂii near-ultraviolet absorption of the highly irradiated hot Jupiter WASP-12b. Monthly Notices of the Royal Astronomical Society, 2019, 487, 4208-4220.	1.6	17
42	High energy processes in Wolfâ€Rayet stars. Astronomische Nachrichten, 2019, 340, 50-53.	0.6	1
43	Extreme hydrodynamic losses of Earth-like atmospheres in the habitable zones of very active stars. Astronomy and Astrophysics, 2019, 624, L10.	2.1	55
44	Transit Lyman- $\langle i \rangle \hat{i} \pm \langle i \rangle$ signatures of terrestrial planets in the habitable zones of M dwarfs. Astronomy and Astrophysics, 2019, 623, A131.	2.1	18
45	Observational constraints for solar-type Stellar winds. Proceedings of the International Astronomical Union, 2019, 15, 313-332.	0.0	0
46	ALMA detects a radial disk wind in DG Tauri (Corrigendum). Astronomy and Astrophysics, 2019, 631, C1.	2.1	1
47	Gravitoviscous protoplanetary disks with a dust component. Astronomy and Astrophysics, 2019, 627, A154.	2.1	22
48	Observatory science with eXTP. Science China: Physics, Mechanics and Astronomy, 2019, 62, 1.	2.0	50
49	an integrated payload design for the atmospheric remote-sensing infrared exoplanet large-survey (ARIEL): results from phase A and forward look to phase B1., 2019,,.		1
50	The chemistry of episodic accretion. Proceedings of the International Astronomical Union, 2019, 15, 440-442.	0.0	1
51	Resolving the Inner Arcsecond of the RY Tau Jet with HST. Astrophysical Journal, 2018, 855, 143.	1.6	17
52	Time-scales of stellar rotational variability and starspot diagnostics. Monthly Notices of the Royal Astronomical Society: Letters, 2018, 473, L84-L88.	1.2	8
53	Extreme Space Weather Events: From Cradle to Grave. Space Science Reviews, 2018, 214, 1.	3.7	97
54	Water Loss from Young Planets. Space Science Reviews, 2018, 214, 1.	3.7	13

#	Article	IF	Citations
55	Multiepoch, multiwavelength study of accretion onto T Tauri. Astronomy and Astrophysics, 2018, 618, A55.	2.1	8
56	Interaction of infalling solid bodies with primordial atmospheres of disk-embedded planets. Astronomy and Astrophysics, 2018, 618, A19.	2.1	1
57	ALMA detects a radial disk wind in DG Tauri. Astronomy and Astrophysics, 2018, 620, L1.	2.1	15
58	Cosmic Pathways to Life: From Interstellar Molecules to the First Traces of Life. Proceedings of the International Astronomical Union, 2018, 14, 1-14.	0.0	0
59	Exoplanet host-star properties: the active environment of exoplanets. Proceedings of the International Astronomical Union, 2018, 14, 202-205.	0.0	0
60	Magnetic geometry and activity of cool stars. Proceedings of the International Astronomical Union, 2018, 14, 341-342.	0.0	0
61	Stellar activity and winds shaping the atmospheres of Earth-like planets. Proceedings of the International Astronomical Union, 2018, 14, 181-184.	0.0	0
62	Direct evidence of a full dipole flip during the magnetic cycle of a sun-like star. Astronomy and Astrophysics, 2018, 620, L11.	2.1	29
63	A chemical survey of exoplanets with ARIEL. Experimental Astronomy, 2018, 46, 135-209.	1.6	249
64	Timescales of starspot variability in slow rotators. Astronomy and Astrophysics, 2018, 613, A31.	2.1	2
65	Modeling of Absorption by Heavy Minor Species for the Hot Jupiter HD 209458b. Astrophysical Journal, 2018, 866, 47.	1.6	13
66	Upper atmospheres of terrestrial planets: Carbon dioxide cooling and the Earth's thermospheric evolution. Astronomy and Astrophysics, 2018, 617, A107.	2.1	50
67	Herschel spectral-line mapping of the HH211 protostellar system. Astronomy and Astrophysics, 2018, 616, A84.	2.1	7
68	A Hydrodynamic Modelling of Atmospheric Escape and Absorption Line of WASP-12b. Proceedings of the International Astronomical Union, 2018, 14, 301-303.	0.0	0
69	Starspot variability as an X-ray radiation proxy. Monthly Notices of the Royal Astronomical Society, 2018, 476, 1224-1233.	1.6	4
70	X-ray radiative transfer in protoplanetary disks. Astronomy and Astrophysics, 2018, 609, A91.	2.1	27
71	Knotty protostellar jets as a signature of episodic protostellar accretion?. Astronomy and Astrophysics, 2018, 613, A18.	2.1	25
72	Origin and evolution of the atmospheres of early Venus, Earth and Mars. Astronomy and Astrophysics Review, 2018, 26, 1.	9.1	124

#	Article	lF	Citations
73	Status of the mid-IR ELT imager and spectrograph (METIS). , 2018, , .		19
74	The ARIEL space mission. , 2018, , .		10
75	Water Loss from Young Planets. Space Sciences Series of ISSI, 2018, , 377-395.	0.0	0
76	The design of the instrument control unit and its role within the data processing system of the ESA PLATO Mission. , 2018, , .		3
77	XMM-Newton X-Ray Observations of LkCa 15: A T Tauri Star with a Formative Planetary System. Astrophysical Journal, 2017, 839, 45.	1.6	27
78	A gas density drop in the inner 6 AU of the transition disk around the Herbig Ae star HD 139614. Astronomy and Astrophysics, 2017, 598, A118.	2.1	22
79	Magma oceans and enhanced volcanism on TRAPPIST-1 planets due to induction heating. Nature Astronomy, 2017, 1, 878-885.	4.2	57
80	Effect of accretion on the pre-main-sequence evolution of low-mass stars and brown dwarfs. Astronomy and Astrophysics, 2017, 605, A77.	2.1	26
81	The chemistry of episodic accretion in embedded objects. Astronomy and Astrophysics, 2017, 604, A15.	2.1	29
82	Escape and evolution of Mars's CO ₂ atmosphere: Influence of suprathermal atoms. Journal of Geophysical Research E: Planets, 2017, 122, 1321-1337.	1.5	19
83	Stellar energetic particle ionization in protoplanetary disks around T Tauri stars. Astronomy and Astrophysics, 2017, 603, A96.	2.1	38
84	Observations of a Radio-Quiet Solar Preflare. Solar Physics, 2017, 292, 1.	1.0	6
85	Feedback of atomic jets from embedded protostars in NGC 1333. Astronomy and Astrophysics, 2017, 597, A64.	2.1	19
86	The nature of very low luminosity objects (VeLLOs). Astronomy and Astrophysics, 2017, 600, A36.	2.1	12
87	Formation of freely floating sub-stellar objects via close encounters. Astronomy and Astrophysics, 2017, 608, A107.	2.1	13
88	Radio emission and mass loss rate limits of four young solar-type stars. Astronomy and Astrophysics, 2017, 599, A127.	2.1	43
89	An alternative model for the origin of gaps in circumstellar disks. Astronomy and Astrophysics, 2016, 587, A146.	2.1	5
90	Consistent dust and gas models for protoplanetary disks. Astronomy and Astrophysics, 2016, 586, A103.	2.1	229

#	Article	IF	CITATIONS
91	Mid-IR spectra of pre-main sequence Herbig stars: An explanation for the non-detections of water lines. Astronomy and Astrophysics, 2016, 585, A61.	2.1	25
92	Formation and Evolution of Protoatmospheres. Space Science Reviews, 2016, 205, 153-211.	3.7	68
93	The science of ARIEL (Atmospheric Remote-sensing Infrared Exoplanet Large-survey). Proceedings of SPIE, 2016, , .	0.8	56
94	CHANDRA AND XMM-NEWTON X-RAY OBSERVATIONS OF THE HYPERACTIVE T TAURI STAR RY TAU. Astrophysical Journal, 2016, 826, 84.	1.6	8
95	Solar XUV and ENAâ€driven water loss from early Venus' steam atmosphere. Journal of Geophysical Research: Space Physics, 2016, 121, 4718-4732.	0.8	31
96	DEEP MIXING IN STELLAR VARIABILITY: IMPROVED METHOD, STATISTICS, AND APPLICATIONS. Astrophysical Journal, 2016, 826, 35.	1.6	5
97	The Characteristics of Solar X-Class Flares and CMEs: A Paradigm for Stellar Superflares and Eruptions?. Solar Physics, 2016, 291, 1761-1782.	1.0	69
98	An integrated payload design for the Atmospheric Remote-sensing Infrared Exoplanet Large-survey (ARIEL). , $2016,$		6
99	Athena Wide Field Imager key science drivers. , 2016, , .		5
100	The LOFT mission concept: a status update. Proceedings of SPIE, 2016, , .	0.8	9
100	The LOFT mission concept: a status update. Proceedings of SPIE, 2016, , . The Gas Disk: Evolution and Chemistry. Space Science Reviews, 2016, 205, 3-40.	0.8	9
101	The Gas Disk: Evolution and Chemistry. Space Science Reviews, 2016, 205, 3-40.	3.7	5
101	The Gas Disk: Evolution and Chemistry. Space Science Reviews, 2016, 205, 3-40. Status of the mid-infrared E-ELT imager and spectrograph METIS. Proceedings of SPIE, 2016, , . EUV-driven mass-loss of protoplanetary cores with hydrogen-dominated atmospheres: the influences of ionization and orbital distance. Monthly Notices of the Royal Astronomical Society, 2016, 460,	3.7	25
101 102 103	The Gas Disk: Evolution and Chemistry. Space Science Reviews, 2016, 205, 3-40. Status of the mid-infrared E-ELT imager and spectrograph METIS. Proceedings of SPIE, 2016, , . EUV-driven mass-loss of protoplanetary cores with hydrogen-dominated atmospheres: the influences of ionization and orbital distance. Monthly Notices of the Royal Astronomical Society, 2016, 460, 1300-1309. Identifying the â€⁻true' radius of the hot sub-Neptune CoRoT-24b by mass-loss modelling. Monthly	3.7 0.8 1.6	5 25 78
101 102 103	The Gas Disk: Evolution and Chemistry. Space Science Reviews, 2016, 205, 3-40. Status of the mid-infrared E-ELT imager and spectrograph METIS. Proceedings of SPIE, 2016, , . EUV-driven mass-loss of protoplanetary cores with hydrogen-dominated atmospheres: the influences of ionization and orbital distance. Monthly Notices of the Royal Astronomical Society, 2016, 460, 1300-1309. Identifying the â€⁻true' radius of the hot sub-Neptune CoRoT-24b by mass-loss modelling. Monthly Notices of the Royal Astronomical Society: Letters, 2016, 461, L62-L66. The roAp star <i>i⟩î±</i> i⟩ Circinus as seen by BRITE-Constellation. Astronomy and Astrophysics, 2016, 588,	3.7 0.8 1.6	5 25 78 53
101 102 103 104	The Gas Disk: Evolution and Chemistry. Space Science Reviews, 2016, 205, 3-40. Status of the mid-infrared E-ELT imager and spectrograph METIS. Proceedings of SPIE, 2016, , . EUV-driven mass-loss of protoplanetary cores with hydrogen-dominated atmospheres: the influences of ionization and orbital distance. Monthly Notices of the Royal Astronomical Society, 2016, 460, 1300-1309. Identifying the â€⁻true' radius of the hot sub-Neptune CoRoT-24b by mass-loss modelling. Monthly Notices of the Royal Astronomical Society: Letters, 2016, 461, L62-L66. The roAp star <i>α</i> i> Circinus as seen by BRITE-Constellation. Astronomy and Astrophysics, 2016, 588, A54. Data reduction software for the Mid-Infrared E-ELT Imager and Spectrograph (METIS) for the European	3.7 0.8 1.6 1.2	5 25 78 53

#	Article	IF	Citations
109	THE EVOLUTION OF STELLAR ROTATION AND THE HYDROGEN ATMOSPHERES OF HABITABLE-ZONE TERRESTRIAL PLANETS. Astrophysical Journal Letters, 2015, 815, L12.	3.0	114
110	The EChO science case. Experimental Astronomy, 2015, 40, 329-391.	1.6	31
111	Ionization and heating by X-rays and cosmic rays. EPJ Web of Conferences, 2015, 102, 00015.	0.1	5
112	The coronal temperatures of low-mass main-sequence stars. Astronomy and Astrophysics, 2015, 578, A129.	2.1	65
113	Colliding winds in low-mass binary star systems: wind interactions and implications for habitable planets. Astronomy and Astrophysics, 2015, 577, A122.	2.1	12
114	Impact induced surface heating by planetesimals on early Mars. Astronomy and Astrophysics, 2015, 574, A22.	2.1	19
115	The effect of external environment on the evolution of protostellar disks. Astronomy and Astrophysics, 2015, 573, A5.	2.1	14
116	Stellar winds on the main-sequence. Astronomy and Astrophysics, 2015, 577, A27.	2.1	76
117	The extreme ultraviolet and X-ray Sun in Time: High-energy evolutionary tracks of a solar-like star. Astronomy and Astrophysics, 2015, 577, L3.	2.1	206
118	Signs of deep mixing in starspot variability. Astronomy and Astrophysics, 2015, 576, A67.	2.1	7
119	RADIO ASTROMETRY OF THE CLOSE ACTIVE BINARY HR 5110. Astrophysical Journal, 2015, 811, 33.	1.6	4
120	The Mid-Infrared Instrument for the <i>James Webb Space Telescope </i> , I: Introduction. Publications of the Astronomical Society of the Pacific, 2015, 127, 584-594.	1.0	244
121	A <i>CHANDRA</i> OBSERVATION OF THE ECLIPSING WOLF-RAYET BINARY CQ Cep. Astrophysical Journal, 2015, 799, 124.	1.6	7
122	Stellar winds on the main-sequence. Astronomy and Astrophysics, 2015, 577, A28.	2.1	162
123	WIDEBAND DYNAMIC RADIO SPECTRA OF TWO ULTRA-COOL DWARFS. Astrophysical Journal, 2015, 802, 106.	1.6	38
124	The Mid-Infrared Instrument for the <i>James Webb Space Telescope </i> , II: Design and Build. Publications of the Astronomical Society of the Pacific, 2015, 127, 595-611.	1.0	113
125	SHORT-PERIOD STELLAR ACTIVITY CYCLES WITH < i > KEPLER < / i > PHOTOMETRY. Astrophysical Journal, 2015, 807, 109.	1.6	36
126	Exoplanet Host Star Radiation and Plasma Environment. Astrophysics and Space Science Library, 2015, , 3-18.	1.0	2

#	Article	IF	Citations
127	Stellar Winds in Time. Astrophysics and Space Science Library, 2015, , 19-35.	1.0	7
128	Sun (and Young Sun). , 2015, , 2419-2435.		0
129	E-ELT/METIS. EAS Publications Series, 2015, 75-76, 405-410.	0.3	O
130	Faint Young Sun Paradox. , 2015, , 837-843.		0
131	[O l] disk emission in the Taurus star-forming region. Astronomy and Astrophysics, 2014, 566, A14.	2.1	12
132	Stellar wind interaction and pick-up ion escape of the Kepler-11 "super-Earths― Astronomy and Astrophysics, 2014, 562, A116.	2.1	63
133	Cool, warm and hot outflows from CTTS: The FUV view of DG Tau. EPJ Web of Conferences, 2014, 64, 08007.	0.1	O
134	Atomic jet from SMM1 (FIRS1) in Serpens uncovers protobinary companion. Astronomy and Astrophysics, 2014, 563, A28.	2.1	15
135	<i>CHANDRA</i> RESOLVES THE T TAURI BINARY SYSTEM RW AUR. Astrophysical Journal, 2014, 788, 101.	1.6	13
136	The PLATO 2.0 mission. Experimental Astronomy, 2014, 38, 249-330.	1.6	912
137	Origin and loss of nebula-captured hydrogen envelopes from  sub'- to  super-Earths' in the habitable zone of Sun-like stars. Monthly Notices of the Royal Astronomical Society, 2014, 439, 3225-3238.	1.6	126
138	EChO fine guidance sensor design and architecture. , 2014, , .		0
139	Origin and Stability of Exomoon Atmospheres: Implications for Habitability. Origins of Life and Evolution of Biospheres, 2014, 44, 239-260.	0.8	21
140	AN X-RAY AND INFRARED SURVEY OF THE LYNDS 1228 CLOUD CORE. Astronomical Journal, 2014, 147, 88.	1.9	1
141	FIRST DETECTION OF THERMAL RADIO EMISSION FROM SOLAR-TYPE STARS WITH THE KARL G. JANSKY VERY LARGE ARRAY. Astrophysical Journal, 2014, 788, 112.	1.6	33
142	Escape of the martian protoatmosphere and initial water inventory. Planetary and Space Science, 2014, 98, 106-119.	0.9	83
143	The magnetosphere of the close accreting PMS binary V4046 Sgr. EPJ Web of Conferences, 2014, 64, 08009.	0.1	2
144	BRITE-Constellation: Nanosatellites for Precision Photometry of Bright Stars. Publications of the Astronomical Society of the Pacific, 2014, 126, 573-585.	1.0	145

#	Article	IF	Citations
145	METIS: the mid-infrared E-ELT imager and spectrograph. Proceedings of SPIE, 2014, , .	0.8	27
146	Stellar magnetic activity and their influence on the habitability of exoplanets. Proceedings of the International Astronomical Union, 2014, 10, 333-339.	0.0	1
147	DN Tauri \hat{a} e" coronal activity and accretion in a young low-mass CTTS. Astronomy and Astrophysics, 2014, 561, A124.	2.1	6
148	X-ray emission from an FU Orionis star in early outburst: HBC 722. Astronomy and Astrophysics, 2014, 570, L11.	2.1	11
149	Jets and Outflows from Star to Cloud: Observations Confront Theory. , 2014, , .		46
150	Astrophysical Conditions for Planetary Habitability., 2014,,.		9
151	Sun (and Young Sun). , 2014, , 1-18.		0
152	XUV-Exposed, Non-Hydrostatic Hydrogen-Rich Upper Atmospheres of Terrestrial Planets. Part I: Atmospheric Expansion and Thermal Escape. Astrobiology, 2013, 13, 1011-1029.	1.5	107
153	The Science of Exoplanets and Their Systems. Astrobiology, 2013, 13, 793-813.	1.5	10
154	Stability of Earth-Like N2 Atmospheres: Implications for Habitability. Thirty Years of Astronomical Discovery With UKIRT, 2013, , 33-52.	0.3	7
155	VERY LARGE ARRAY OBSERVATIONS OF DG TAU'S RADIO JET: A HIGHLY COLLIMATED THERMAL OUTFLOW. Astrophysical Journal, 2013, 766, 53.	1.6	13
156	AN ANALYSIS OF THE ENVIRONMENTS OF FU ORIONIS OBJECTS WITH <i>HERSCHEL</i> Journal, 2013, 772, 117.	1.6	32
157	CHARACTERIZING EXOPLANETS IN THE VISIBLE AND INFRARED: A SPECTROMETER CONCEPT FOR THE ECHO SPACE MISSION. Journal of Astronomical Instrumentation, 2013, 02, .	0.8	3
158	XUV-Exposed, Non-Hydrostatic Hydrogen-Rich Upper Atmospheres of Terrestrial Planets. Part II: Hydrogen Coronae and Ion Escape. Astrobiology, 2013, 13, 1030-1048.	1.5	53
159	THE <i>HERSCHEL</i> DIGIT SURVEY OF WEAK-LINE T TAURI STARS: IMPLICATIONS FOR DISK EVOLUTION AND DISSIPATION. Astrophysical Journal, 2013, 762, 100.	1.6	47
160	DISCOVERY OF X-RAY EMISSION FROM YOUNG SUNS IN THE SMALL MAGELLANIC CLOUD. Astrophysical Journal, 2013, 765, 73.	1.6	14
161	DIGIT survey of far-infrared lines from protoplanetary disks. Astronomy and Astrophysics, 2013, 559, A77.	2.1	95
162	Stellar CME activity and its possible influence on exoplanets' environments: Importance of magnetospheric protection. Proceedings of the International Astronomical Union, 2013, 8, 335-346.	0.0	5

#	Article	IF	CITATIONS
163	<i>BRITE-Constellation</i> i>: Nanosatellites for precision photometry of bright stars. Proceedings of the International Astronomical Union, 2013, 9, 67-68.	0.0	4
164	V4046 Sgr: X-rays from accretion shock. Proceedings of the International Astronomical Union, 2013, 9, 46-47.	0.0	0
165	Constraining Stellar Winds of Young Sun-like Stars. Proceedings of the International Astronomical Union, 2013, 9, 243-244.	0.0	0
166	The magnetosphere of the close accreting PMS binary V4046 Sgr AB. Proceedings of the International Astronomical Union, 2013, 9, 44-45.	0.0	1
167	X-RAY IRRADIATION OF THE LkCa 15 PROTOPLANETARY DISK. Astrophysical Journal, 2013, 765, 3.	1.6	19
168	HST far-ultraviolet imaging of DG Tauri. Astronomy and Astrophysics, 2013, 557, A110.	2.1	16
169	HST FUV C iv observations of the hot DG Tauri jet. Astronomy and Astrophysics, 2013, 550, L1.	2.1	22
170	Evolution of Stellar Magnetic Fields. Proceedings of the International Astronomical Union, 2012, 10, 90-91.	0.0	0
171	THE CLOSE T TAURI BINARY SYSTEM V4046 Sgr: ROTATIONALLY MODULATED X-RAY EMISSION FROM ACCRETION SHOCKS. Astrophysical Journal, 2012, 752, 100.	1.6	31
172	Variability of solar/stellar activity and magnetic field and its influence on planetary atmosphere evolution. Earth, Planets and Space, 2012, 64, 179-199.	0.9	57
173	NEW X-RAY DETECTIONS OF WNL STARS. Astronomical Journal, 2012, 143, 116.	1.9	27
174	Visible/infrared spectrometer for EChO., 2012,,.		0
175	On the origin of [NeÂll]Âemission in young stars: mid-infrared and optical observations with the Very Large Telescope. Astronomy and Astrophysics, 2012, 543, A30.	2.1	25
176	Estimating the frequency of extremely energetic solar events, based on solar, stellar, lunar, and terrestrial records. Journal of Geophysical Research, 2012, 117, .	3.3	141
177	ORIGIN: metal creation and evolution from the cosmic dawn. Experimental Astronomy, 2012, 34, 519-549.	1.6	6
178	EChO. Experimental Astronomy, 2012, 34, 311-353.	1.6	98
179	The Exoplanet Characterization Observatory (EChO): performance model <i>EclipseSim</i> applications. Proceedings of SPIE, 2012, , .	0.8	1
180	METIS: the thermal infrared instrument for the E-ELT. , 2012, , .		7

#	Article	IF	CITATIONS
181	RADIO ASTROMETRY OF THE TRIPLE SYSTEMS ALGOL AND UX ARIETIS. Astrophysical Journal, 2011, 737, 104.	1.6	47
182	DISENTANGLING THE ENVIRONMENT OF THE FU ORIONIS CANDIDATE HBC 722 WITH <i>HERSCHEL</i> Astrophysical Journal Letters, 2011, 731, L25.	3.0	22
183	<i>CHANDRA</i> EVIDENCE FOR EXTENDED X-RAY STRUCTURE IN RY Tau. Astrophysical Journal, 2011, 737, 19.	1.6	22
184	GSC 07396-00759 = V4046 Sgr C[D]: A WIDE-SEPARATION COMPANION TO THE CLOSE T TAURI BINARY SYSTEM V4046 Sgr AB. Astrophysical Journal Letters, 2011, 740, L17.	3.0	25
185	Searching for gas emission lines in <i>Spitzer</i> li>Infrared Spectrograph (IRS) spectra of young stars in Taurus. Astronomy and Astrophysics, 2011, 528, A22.	2.1	20
186	On the mass segregation of stars and brown dwarfs in Taurus. Monthly Notices of the Royal Astronomical Society, 2011, 412, 2489-2497.	1.6	41
187	The close classical T Tauri binary V4046 Sgr: complex magnetic fields and distributed mass accretion. Monthly Notices of the Royal Astronomical Society, 2011, 417, 1747-1759.	1.6	63
188	Pathways to Earth-Like Atmospheres. Origins of Life and Evolution of Biospheres, 2011, 41, 503-522.	0.8	48
189	UV transit observations of EUV-heated expanded thermospheres of Earth-like exoplanets around M-stars: testing atmosphere evolution scenarios. Astrophysics and Space Science, 2011, 335, 39-50.	0.5	24
190	UV transit observations of EUV-heated expanded thermospheres of Earth-like exoplanets around M-stars: testing atmosphere evolution scenarios. , 2011 , , 39 -50.		0
191	Plasma Motion and Kinematics in Cool and Hot Stars. , 2011, , 211-228.		O
192	The science of EChO. Proceedings of the International Astronomical Union, 2010, 6, 359-370.	0.0	5
193	<i>CHANDRA</i> DETECTS THE RARE OXYGEN-TYPE WOLF-RAYET STAR WR 142 AND OB STARS IN BERKELEY 87. Astrophysical Journal, 2010, 715, 1327-1337.	1.6	21
194	The disk-bearing young star IM Lupi. Astronomy and Astrophysics, 2010, 519, A97.	2.1	14
195	<i>CHANDRA</i> REVEALS VARIABLE MULTI-COMPONENT X-RAY EMISSION FROM FU ORIONIS. Astrophysical Journal, 2010, 722, 1654-1665.	1.6	11
196	Exoplanet status report: Observation, characterization and evolution of exoplanets and their host stars. Solar System Research, 2010, 44, 290-310.	0.3	7
197	Plasma Motion and Kinematics in Cool and Hot Stars. Space Science Reviews, 2010, 157, 211-228.	3.7	7
198	Effects of X-ray irradiation and disc flaring on the [Neâ€fii] 12.8 μm emission from young stellar objects. Monthly Notices of the Royal Astronomical Society, 2010, 401, 1636-1643.	1.6	17

#	Article	IF	CITATIONS
199	A large coronal loop in the Algol system. Nature, 2010, 463, 207-209.	13.7	38
200	First results of the <i>Herschel</i> key program "Dust, Ice and Gas InÂTime―(DIGIT): Dust and gas spectroscopy of HD 100546. Astronomy and Astrophysics, 2010, 518, L129.	2.1	67
201	On the origin of [NeII]Â12.81Â <i>$\hat{l}^{1}/4$</i> m emission from pre-main sequence stars: Disks, jets, and accretion. Astronomy and Astrophysics, 2010, 519, A113.	2.1	67
202	Dust, Ice, and Gas In Time (DIGIT) <i>Herschel</i> program first results. Astronomy and Astrophysics, 2010, 518, L128.	2.1	38
203	X-RAY EMISSION FROM NITROGEN-TYPE WOLF-RAYET STARS. Astronomical Journal, 2010, 139, 825-838.	1.9	50
204	THE TAURUS <i>SPITZER</i> SURVEY: NEW CANDIDATE TAURUS MEMBERS SELECTED USING SENSITIVE MID-INFRARED PHOTOMETRY. Astrophysical Journal, Supplement Series, 2010, 186, 259-307.	3.0	224
205	Progress with the design and development of MIRI, the mid-IR instrument for JWST. , 2010, , .		8
206	Physical Processes in Magnetically Driven Flares on the Sun, Stars, and Young Stellar Objects. Annual Review of Astronomy and Astrophysics, 2010, 48, 241-287.	8.1	185
207	The large-scale disk fraction of brown dwarfs in the Taurus cloud as measured with Spitzer. Astronomy and Astrophysics, 2010, 515, A91.	2.1	25
208	A multi-wavelength study of the young star V1118ÂOrionis inÂoutburst. Astronomy and Astrophysics, 2010, 511, A63.	2.1	46
209	X-RAY EMISSION FROM THE FU ORIONIS STAR V1735 CYGNI. Astrophysical Journal, 2009, 696, 766-774.	1.6	21
210	A decade of X-ray astronomy with XMM-Newton. Astronomy and Astrophysics, 2009, 500, 595-596.	2.1	1
211	FAR-INFRARED OBSERVATIONS OF THE VERY LOW LUMINOSITY EMBEDDED SOURCE L1521F-IRS IN THE TAURUS STAR-FORMING REGION. Astrophysical Journal, 2009, 696, 1918-1930.	1.6	36
212	<i>CHANDRA</i> AND <i>SPITZER</i> IMAGING OF THE INFRARED CLUSTER IN NGC 2071. Astrophysical Journal, 2009, 701, 710-724.	1.6	18
213	Young Stellar Objects from Soft to Hard X-rays. , 2009, , .		1
214	X-ray spectroscopy of stars. Astronomy and Astrophysics Review, 2009, 17, 309-408.	9.1	225
215	HDE 245059: A WEAK-LINED T TAURI BINARY REVEALED BY <i>CHANDRA</i> AND KECK. Astrophysical Journal, 2009, 697, 493-505.	1.6	3
216	High-energy radiation and particles in the environments of young stellar objects. Proceedings of the International Astronomical Union, 2009, 5, 742-743.	0.0	0

#	Article	IF	Citations
217	Magnetic activity, high-energy radiation and variability: from young solar analogs to low-mass objects. Proceedings of the International Astronomical Union, 2009, 5, 375-384.	0.0	O
218	X-rays and Protoplanetary Disks. , 2009, , .		0
219	Dust amorphization in protoplanetary disks. Astronomy and Astrophysics, 2009, 508, 247-257.	2.1	21
220	Physics of Stellar Coronae. Lecture Notes in Physics, 2009, , 269-325.	0.3	4
221	X-Ray Emission from Young Stellar Jets. Thirty Years of Astronomical Discovery With UKIRT, 2009, , 347-352.	0.3	4
222	An outflow origin of the [NeÂII] emission in the TÂTauri triplet. Astronomy and Astrophysics, 2009, 497, 137-144.	2.1	33
223	Xâ€rays from young stars: A summary of highlights from the XMMâ€Newton Extended Survey of the Taurus Molecular Cloud (XEST). Astronomische Nachrichten, 2008, 329, 218-221.	0.6	19
224	Million-Degree Plasma Pervading the Extended Orion Nebula. Science, 2008, 319, 309-312.	6.0	116
225	Scaling Laws of Solar and Stellar Flares. Astrophysical Journal, 2008, 672, 659-673.	1.6	68
226	A contamination control cover for the Mid Infrared Instrument of the James Webb Space Telescope. , 2008, , .		3
227	Discovery of a bipolar X-ray jet from the TÂTauri star DG Tauri. Astronomy and Astrophysics, 2008, 478, 797-807.	2.1	97
228	Multiwavelength studies of the gas and dust disc of IRAS 04158+2805. Astronomy and Astrophysics, 2008, 485, 531-540.	2.1	26
229	The XMM-Newton extended survey of the Taurus molecular cloud (XEST). Astronomy and Astrophysics, 2007, 468, 353-377.	2.1	274
230	The Sun in Time: Activity and Environment. Living Reviews in Solar Physics, 2007, 4, 1.	7.8	158
231	Hard Xâ∈Rays and Fluorescent Iron Emission from the Embedded Infrared Cluster in NGC 2071. Astrophysical Journal, 2007, 658, 1144-1151.	1.6	16
232	Accretion and outflow-related X-rays in T Tauri stars. Proceedings of the International Astronomical Union, 2007, 3, 155-162.	0.0	1
233	X-ray emission from TÂTauri stars and the role of accretion: inferences from the XMM-Newton extended survey of the Taurus molecular cloud. Astronomy and Astrophysics, 2007, 468, 425-442.	2.1	146
234	Unbinned maximum-likelihood estimators for low-count data. Astronomy and Astrophysics, 2007, 468, 501-514.	2.1	12

#	Article	IF	CITATIONS
235	The X-ray soft excess in classical T Tauri stars. Astronomy and Astrophysics, 2007, 474, L25-L28.	2.1	79
236	The first high-resolution X-ray spectrum of a Herbig star: ABÂAurigae. Astronomy and Astrophysics, 2007, 468, 541-556.	2.1	62
237	New pre-main sequence candidates in the Taurus-Auriga star forming region. Astronomy and Astrophysics, 2007, 468, 405-412.	2.1	22
238	X-ray emission from the young brown dwarfs of the Taurus molecular cloud. Astronomy and Astrophysics, 2007, 468, 391-403.	2.1	32
239	A statistical analysis of X-ray variability in pre-main sequence objects of the Taurus molecular cloud. Astronomy and Astrophysics, 2007, 468, 463-475.	2.1	72
240	High-resolution X-ray spectroscopy of TÂTauri stars in theÂTaurus-Auriga complex. Astronomy and Astrophysics, 2007, 468, 443-462.	2.1	68
241	X-rays from T Tauri: a test case for accreting T Tauri stars. Astronomy and Astrophysics, 2007, 468, 529-540.	2.1	73
242	The XMM-Newton Optical Monitor survey of the Taurus molecular cloud. Astronomy and Astrophysics, 2007, 468, 379-390.	2.1	27
243	Spectral properties of X-ray bright variable sources in the Taurus molecular cloud. Astronomy and Astrophysics, 2007, 468, 485-499.	2.1	31
244	The X-ray activity-rotation relation of T Tauri stars in Taurus-Auriga. Astronomy and Astrophysics, 2007, 468, 413-424.	2.1	22
245	On the circum(sub)stellar environment of brown dwarfs in Taurus. Astronomy and Astrophysics, 2007, 465, 855-864.	2.1	39
246	XMMâ€"Newton X-ray observations of the Wolfâ€"Rayet binary system WR 147. Monthly Notices of the Royal Astronomical Society, 2007, 378, 1491-1498.	1.6	18
247	The X-ray spectra of the flaring and quiescent states of YZ CMi observed by XMM-Newton. Monthly Notices of the Royal Astronomical Society, 2007, 379, 1075-1082.	1.6	15
248	A U-band survey of brown dwarfs in the Taurus molecular cloud with the XMM-Newton optical/UV monitor. Astronomy and Astrophysics, 2007, 468, 557-562.	2.1	11
249	X-rays from jet-driving protostars and TÂTauri stars. Astronomy and Astrophysics, 2007, 468, 515-528.	2.1	60
250	Statistics of superimposed flares in the Taurus molecular cloud. Astronomy and Astrophysics, 2007, 468, 477-484.	2.1	13
251	Coronal abundances of X-ray bright pre-main sequence stars in the Taurus molecular cloud. Astronomy and Astrophysics, 2007, 473, 589-601.	2.1	21
252	A <i>Chandra</i> X-ray detection of the L dwarf binary Kelu-1. Astronomy and Astrophysics, 2007, 471, L63-L66.	2.1	36

#	Article	IF	Citations
253	X-Ray Polarization of Solar Flares Measured with Rhessi. Solar Physics, 2006, 239, 149-172.	1.0	46
254	X-ray Observations of Binary and Single Wolf-Rayet Stars with XMM-Newton and Chandra. Astrophysics and Space Science, 2006, 304, 97-99.	0.5	29
255	X-ray Emission from the Pre-Main Sequence Systems FU Orionis and T Tauri. Astrophysics and Space Science, 2006, 304, 165-167.	0.5	3
256	On temperature and abundance effects during an X-ray flare on $\ddot{l}f$ \hat{A} Geminorum. Astronomy and Astrophysics, 2006, 446, 621-626.	2.1	9
257	The Unusual Xâ€Ray Spectrum of FU Orionis. Astrophysical Journal, 2006, 643, 995-1002.	1.6	24
258	X-ray Observations of Binary and Single Wolf-Rayet Stars with XMM-Newton and Chandra. , 2006, , 95-97.		0
259	X-ray Emission from the Pre-Main Sequence Systems FU Orionis and T Tauri. , 2006, , 163-165.		0
260	X-Ray Spectral Variability during an Outburst in V1118 Ori. Astrophysical Journal, 2005, 635, L81-L84.	1.6	28
261	AnXMMâ∈NewtonStudy of the Coronae of Ïf2Coronae Borealis. Astrophysical Journal, 2005, 630, 1074-1087.	1.6	10
262	A Deep Look at the T-Type Brown Dwarf Binary ε Indi Bab with Chandra and the Australia Telescope Compact Array. Astrophysical Journal, 2005, 625, L63-L66.	1.6	8
263	Evolution of the Solar Activity over Time and Effects on Planetary Atmospheres. I. Highâ€Energy Irradiances (1–1700 A). Astrophysical Journal, 2005, 622, 680-694.	1.6	684
264	Evidence for an X-Ray Jet in DG Tauri A?. Astrophysical Journal, 2005, 626, L53-L56.	1.6	76
265	INTEGRALSPI Limits on Electronâ€Positron Annihilation Radiation from the Galactic Plane. Astrophysical Journal, 2005, 621, 296-300.	1.6	51
266	Instruments for Nuclear Astrophysics. , 2005, , 82-197.		3
267	Hard X-Ray and Gamma Ray Spectroscopy. , 2005, , 198-283.		0
268	Soft X-Ray Spectroscopy of Astrophysical Plasmas. , 2005, , 2-82.		1
269	Benchmark Exercises for stellar X-ray Spectroscopy Testing (BEXST). , 2005, , .		0
270	Relationship between X-ray and ultraviolet emission of flares from dMe stars observed by XMM-Newton. Astronomy and Astrophysics, 2005, 431, 679-686.	2.1	70

#	Article	IF	Citations
271	Flares observed with XMM-Newton and the VLA. Astronomy and Astrophysics, 2005, 436, 241-251.	2.1	31
272	Coronal Evolution of the Sun in Time: Highâ€Resolution Xâ€Ray Spectroscopy of Solar Analogs with Different Ages. Astrophysical Journal, 2005, 622, 653-679.	1.6	138
273	High-amplitude, long-term X-ray variability in the solar-type starÂHDÂ81809: The beginning of an X-ray activity cycle?. Astronomy and Astrophysics, 2004, 418, L13-L16.	2.1	38
274	Stellar Flares and Coronal Structure. Symposium - International Astronomical Union, 2004, 219, 159-170.	0.1	1
275	X-ray Emission from Young Stars in Suburban Orion. Symposium - International Astronomical Union, 2004, 219, 228-232.	0.1	0
276	Some Like It Hot: The Xâ∈Ray Emission of the Giant Star YY Mensae. Astrophysical Journal, 2004, 617, 531-550.	1.6	23
277	Wind clumping and the wind-wind collision zone in the Wolf-Rayet binaryl̃³2 Velorum. Astronomy and Astrophysics, 2004, 422, 177-191.	2.1	55
278	Observing Gamma Ray Bursts with the RHESSI satellite. Nuclear Physics, Section B, Proceedings Supplements, 2004, 132, 331-334.	0.5	4
279	X-ray astronomy of stellar coronae. Astronomy and Astrophysics Review, 2004, 12, 71.	9.1	292
280	XMM-Newton X-ray observations of $\hat{I}^32\hat{A}$ Velorum (WC8 + O7.5III). Nuclear Physics, Section B, Proceedings Supplements, 2004, 132, 697-700.	0.5	1
281	Gammaâ€Ray Burst Polarization: Limits fromRHESSIMeasurements. Astrophysical Journal, 2004, 613, 1088-1100.	1.6	105
282	Resolving X-Ray Sources from B Stars Spectroscopically: The Example of \hat{l}^4 Leporis. Astrophysical Journal, 2004, 612, L65-L68.	1.6	8
283	New Perspectives on the Xâ€Ray Emission of HD 104237 and Other Nearby Herbig Ae/Be Stars fromXMMâ€NewtonandChandra. Astrophysical Journal, 2004, 614, 221-234.	1.6	41
284	Are Coronae of Magnetically Active Stars Heated by Flares? III. Analytical Distribution of Superposed Flares. Astrophysical Journal, 2004, 602, 363-376.	1.6	23
285	Flares from small to large: X-ray spectroscopy of Proxima Centauri with XMM-Newton. Astronomy and Astrophysics, 2004, 416, 713-732.	2.1	102
286	Modeling an X-ray flare on Proxima Centauri: Evidence of two flaring loop components and of two heating mechanisms at work. Astronomy and Astrophysics, 2004, 416, 733-747.	2.1	57
287	On the sizes of stellar X-ray coronae. Astronomy and Astrophysics, 2004, 427, 667-683.	2.1	110
288	Coronal densities and temperatures for cool stars in different stages of activity. Advances in Space Research, 2003, 32, 937-943.	1.2	5

#	Article	lF	Citations
289	Energy release in stellar coronae. Advances in Space Research, 2003, 32, 1011-1020.	1.2	O
290	An XMM-Newton observation of the flare star AU MIC. Advances in Space Research, 2003, 32, 1149-1154.	1.2	13
291	AD Leonis, (dM3:l5V): Analysis of the x-ray spectrum. Advances in Space Research, 2003, 32, 1155-1159.	1.2	O
292	XMM-Newton high-resolution x-ray spectroscopy of the Wolf-Rayet object WR25 (WN6HA+04F). Advances in Space Research, 2003, 32, 1161-1165.	1.2	1
293	High-resolution XMM-Newton X-ray spectra of Ï., SCORPII. Advances in Space Research, 2003, 32, 1167-1173.	1.2	3
294	X-ray spectroscopic studies of stars. Advances in Space Research, 2003, 32, 2045-2058.	1.2	1
295	Separating the Xâ€Ray Emissions of UV Ceti A and B withChandra. Astrophysical Journal, 2003, 589, 983-987.	1.6	31
296	Performance and results of the reflection grating spectrometers onboard XMM-Newton., 2003, 4851, 196.		2
297	Modeling Stellar Microflares. , 2003, , 451-452.		0
298	The Sun in Time: From PMS to Main Sequence. EAS Publications Series, 2003, 9, 339-339.	0.3	1
299	XMM-Newtonhigh-resolution X-ray spectroscopy of the Wolf-Rayet object WR 25 in the Carina OB1 association. Astronomy and Astrophysics, 2003, 402, 653-666.	2.1	42
300	A study of coronal abundances in RSÂCVn binaries. Astronomy and Astrophysics, 2003, 398, 1137-1149.	2.1	93
301	Tomography of a stellar X-ray corona:αCoronae Borealis. Astronomy and Astrophysics, 2003, 403, 155-171.	2.1	22
302	VLBI observations of TÂTauri South. Astronomy and Astrophysics, 2003, 406, 957-967.	2.1	41
303	High-resolution X-ray spectroscopy of Ä, ÂScorpii (B0.2V) with XMM-Newton. Astronomy and Astrophysics, 2003, 398, 203-211.	2.1	37
304	Are stellar coronae optically thin in X-rays?. Astronomy and Astrophysics, 2003, 407, 347-358.	2.1	55
305	The X-ray spectra of the flaring and quiescent states of ATÂMicroscopii observed by XMM-Newton. Astronomy and Astrophysics, 2003, 411, 509-515.	2.1	28
306	AD Leonis: Flares observed by XMM-Newton and Chandra. Astronomy and Astrophysics, 2003, 411, 587-593.	2.1	31

#	Article	IF	CITATIONS
307	Are Coronae of Magnetically Active Stars Heated by Flares? II. Extreme Ultraviolet and Xâ€Ray Flare Statistics and the Differential Emission Measure Distribution. Astrophysical Journal, 2003, 582, 423-442.	1.6	113
308	Flare Heating in Stellar Coronae. Astrophysical Journal, 2002, 580, 1118-1132.	1.6	76
309	X-Ray Evidence for Flare Density Variations and Continual Chromospheric Evaporation in Proxima Centauri. Astrophysical Journal, 2002, 580, L73-L76.	1.6	78
310	XMMâ€NewtonDetection of Hard Xâ€Ray Emission in the Nitrogenâ€Type Wolfâ€Rayet Star WR 110. Astrophysical Journal, 2002, 572, 477-486.	1.6	39
311	Detection of the Neupert Effect in the Corona of an RS Canum Venaticorum Binary System byXMMâ€Newtonand the Very Large Array. Astrophysical Journal, 2002, 577, 371-376.	1.6	38
312	X–rays from stars. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2002, 360, 1935-1949.	1.6	2
313	High-resolution X-ray spectroscopy of Procyon by Chandra and XMM-Newton. Astronomy and Astrophysics, 2002, 389, 228-238.	2.1	106
314	Stellar Radio Astronomy: Probing Stellar Atmospheres from Protostars to Giants. Annual Review of Astronomy and Astrophysics, 2002, 40, 217-261.	8.1	264
315	Simultaneous X-ray spectroscopy of YY Gem withChandraandXMM-Newton. Astronomy and Astrophysics, 2002, 392, 585-598.	2.1	49
316	XMMâ€Newtonand Very Large Array Observations of the Variable Wolfâ€Rayet Star EZ Canis Majoris: Evidence for a Close Companion?. Astrophysical Journal, 2002, 579, 764-773.	1.6	32
317	The XMM-Newton view of stellar coronae: Coronal structure in the Castor X-ray triplet. Astronomy and Astrophysics, 2001, 365, L344-L352.	2.1	63
318	The XMM-Newton view of stellar coronae: Flare heating in the coronae of HR 1099. Astronomy and Astrophysics, 2001, 365, L318-L323.	2.1	67
319	The XMM-Newton view of stellar coronae: X-ray spectroscopy of the corona of AB Doradus. Astronomy and Astrophysics, 2001, 365, L336-L343.	2.1	101
320	The XMM-Newton view of stellar coronae: High-resolution X-ray spectroscopy of Capella. Astronomy and Astrophysics, 2001, 365, L329-L335.	2.1	86
321	High resolution X-ray spectroscopy of Puppis with the XMM-Newton reflection grating spectrometer. Astronomy and Astrophysics, 2001, 365, L312-L317.	2.1	170
322	Mechanisms for Coronal Mass Supply by Evaporative Micro-Events. Symposium - International Astronomical Union, 2001, 203, 498-500.	0.1	0
323	The Reflection Grating Spectrometer on board XMM-Newton. Astronomy and Astrophysics, 2001, 365, L7-L17.	2.1	781
324	First light measurements with the XMM-Newton reflection grating spectrometers: Evidence for an inverse first ionisation potential effect and anomalous Ne abundance in the Coronae of HR 1099. Astronomy and Astrophysics, 2001, 365, L324-L328.	2.1	152

#	Article	IF	CITATIONS
325	[ITAL]Chandra[/ITAL] Detection of a Close X-Ray Companion and Rich Emission-Line Spectrum in the Wolf-Rayet Binary Î ³ Velorum. Astrophysical Journal, 2001, 558, L113-L116.	1.6	46
326	VLBA Imaging of Quiescent Radio Emission from UX Arietis. Astrophysical Journal, 2000, 529, 961-967.	1.6	21
327	In-flight calibration of the XMM-Newton reflection grating spectrometers. , 2000, 4140, 13.		0
328	<title>Description and performance of the reflection grating spectrometer on board of XMM-Newton</title> ., 2000, 4012, 102.		2
329	Gyrosynchrotron Emission from Stellar Coronae. Symposium - International Astronomical Union, 2000, 195, 393-394.	0.1	1
330	X-ray Radiation from Flare-heated Coronal Plasma. Symposium - International Astronomical Union, 2000, 195, 395-396.	0.1	0
331	Active Late-Type Stellar Coronae: Hints for Flare Heating?. Symposium - International Astronomical Union, 2000, 195, 377-378.	0.1	1
332	The Faint Young Sun Paradox: An observational test of an alternative solar model. Geophysical Research Letters, 2000, 27, 501-503.	1.5	62
333	Extremeâ€Ultraviolet Flare Activity in Lateâ€Type Stars. Astrophysical Journal, 2000, 541, 396-409.	1.6	169
334	On the perspectives of using XMM to study fundamental parameters of early-type stars. Symposium - International Astronomical Union, 1999, 193, 90-91.	0.1	0
335	Flaring and Quiescent Coronae of UX Arietis: Results fromASCAandEUVECampaigns. Astrophysical Journal, 1999, 511, 405-421.	1.6	75
336	The Active Corona of HD 35850 (F8 V). Astrophysical Journal, 1999, 515, 423-434.	1.6	15
337	Implications from Extreme-Ultraviolet Observations for Coronal Heating of Active Stars. Astrophysical Journal, 1999, 513, L53-L56.	1.6	48
338	High-Energy Aspects of Stellar Coronae. Physica Scripta, 1998, T77, 133-136.	1.2	0
339	ASCAObservations of the Barnard 209 Dark Cloud and an Intense Xâ€Ray Flare on V773 Tauri. Astrophysical Journal, 1997, 486, 886-902.	1.6	26
340	A Determination of the Coronal Emission Measure Distribution in the Young Solar Analog EK Draconis from ASCA/EUVES pectra. Astrophysical Journal, 1997, 479, 416-426.	1.6	32
341	New Perspectives on AX Monocerotis. Astrophysical Journal, 1997, 484, 394-411.	1.6	20
342	The Xâ∈Ray Sun in Time: A Study of the Longâ∈Term Evolution of Coronae of Solarâ∈Type Stars. Astrophysical Journal, 1997, 483, 947-960.	1.6	265

#	Article	IF	Citations
343	Are Coronae of Magnetically Active Stars Heated by Flares?. Astrophysical Journal, 1997, 480, L121-L124.	1.6	55
344	On radio emission and related X-rays in solar-like stellar coronae. Symposium - International Astronomical Union, 1996, 176, 485-492.	0.1	0
345	The Sun in Time: Evolution of Coronae of Solar-Type Stars. International Astronomical Union Colloquium, 1996, 152, 519-524.	0.1	1
346	Reform and UK Higher Education in the Enterprise Era. Higher Education Quarterly, 1996, 50, 54-70.	1.8	8
347	The Neupert Effect in Active Stellar Coronae: Chromospheric Evaporation and Coronal Heating in the dMe Flare Star Binary UV Ceti. Astrophysical Journal, 1996, 471, 1002-1014.	1.6	70
348	The Sun in Time: Evolution of Coronae of Solar-Type Stars. , 1996, , 519-524.		1
349	X-Ray Emission from the Sun in Its Youth and Old Age. Astrophysical Journal, 1995, 448, 431.	1.6	40
350	Quiescent Microwave Emission from Late-Type Stars. International Astronomical Union Colloquium, 1994, 142, 743-751.	0.1	0
351	Discovery of Microwave Emission from Four Nearby Solar-Type G Stars. Science, 1994, 265, 933-935.	6.0	11
352	Quiescent microwave emission from late-type stars. Astrophysical Journal, Supplement Series, 1994, 90, 743.	3.0	21
353	Correlation Between Radio and X-Ray Luminosities among Late-Type Stars: A ROSAT-VLA Survey of M Dwarfs. Astrophysics and Space Science Library, 1993, , 383-386.	1.0	2
354	Radio observations of peculiar emission-line Algol binary stars. Astronomical Journal, 1993, 106, 337.	1.9	4
355	A tight correlation between radio and X-ray luminosities of M dwarfs. Astrophysical Journal, 1993, 415, 236.	1.6	42
356	Electromagnetic Radiation from a Strong DC Electric Field. Astrophysical Journal, 1993, 415, 750.	1.6	7
357	X-ray/microwave relation of different types of active stars. Astrophysical Journal, 1993, 405, L63.	1.6	213
358	The coevolution of decimetric millisecond spikes and hard X-ray emission during solar flares. Astrophysical Journal, 1992, 401, 736.	1.6	76
359	A broadband spectrometer for decimetric and microwave radio bursts: First results. Solar Physics, 1991, 133, 385-393.	1.0	66
360	Radio Emission of Dwarf Novae. Astrophysics and Space Science Library, 1989, , 113-116.	1.0	1

#	Article	IF	CITATIONS
361	Harmonic emission and polarization of millisecond radio spikes. Solar Physics, 1987, 111, 175-180.	1.0	29
362	Coronae of cool stars. Astrophysics and Space Science, 1971, 11, 284-287.	0.5	11
363	The young Sun and its influence on planetary atmospheres. , 0, , 167-182.		2