
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2306652/publications.pdf Version: 2024-02-01

FLIEN D RENNED

#	Article	IF	CITATIONS
1	Gain-of-function human <i>STAT1</i> mutations impair IL-17 immunity and underlie chronic mucocutaneous candidiasis. Journal of Experimental Medicine, 2011, 208, 1635-1648.	4.2	739
2	Human Tyrosine Kinase 2 Deficiency Reveals Its Requisite Roles in Multiple Cytokine Signals Involved in Innate and Acquired Immunity. Immunity, 2006, 25, 745-755.	6.6	601
3	Heterozygous STAT1 gain-of-function mutations underlie an unexpectedly broad clinical phenotype. Blood, 2016, 127, 3154-3164.	0.6	465
4	Commensal bacteria–derived signals regulate basophil hematopoiesis and allergic inflammation. Nature Medicine, 2012, 18, 538-546.	15.2	408
5	The European Society for Immunodeficiencies (ESID) Registry Working Definitions for the ClinicalÂDiagnosis of Inborn Errors of Immunity. Journal of Allergy and Clinical Immunology: in Practice, 2019, 7, 1763-1770.	2.0	381
6	Genetic Linkage of Hyper-IgE Syndrome to Chromosome 4. American Journal of Human Genetics, 1999, 65, 735-744.	2.6	360
7	Novel signal transducer and activator of transcription 3 (STAT3) mutations, reduced TH17 cell numbers, and variably defective STAT3 phosphorylation in hyper-IgE syndrome. Journal of Allergy and Clinical Immunology, 2008, 122, 181-187.	1.5	290
8	DOCK8 Deficiency: Clinical and Immunological Phenotype and Treatment Options - a Review of 136 Patients. Journal of Clinical Immunology, 2015, 35, 189-198.	2.0	284
9	Autosomal recessive hyperimmunoglobulin E syndrome: a distinct disease entity. Journal of Pediatrics, 2004, 144, 93-99.	0.9	251
10	ComÃ ^{°I} -Netherton syndrome defined as primary immunodeficiency. Journal of Allergy and Clinical Immunology, 2009, 124, 536-543.	1.5	164
11	Targeted next-generation sequencing: AÂnovel diagnostic tool for primary immunodeficiencies. Journal of Allergy and Clinical Immunology, 2014, 133, 529-534.e1.	1.5	143
12	Diagnostic approach to the hyper-IgE syndromes: Immunologic and clinical key findings to differentiate hyper-IgE syndromes from atopic dermatitis. Journal of Allergy and Clinical Immunology, 2010, 126, 611-617.e1.	1.5	140
13	Defective actin accumulation impairs human natural killer cell function in patients with dedicator of cytokinesis 8 deficiency. Journal of Allergy and Clinical Immunology, 2013, 131, 840-848.	1.5	113
14	Atopic dermatitis, <scp>STAT</scp> 3―and <scp>DOCK</scp> 8â€hyperâ€igE syndromes differ in IgEâ€based sensitization pattern. Allergy: European Journal of Allergy and Clinical Immunology, 2014, 69, 943-953.	2.7	86
15	Successful Long-Term Correction of Autosomal Recessive Hyper-IgE Syndrome due to DOCK8 Deficiency by Hematopoietic Stem Cell Transplantation. Klinische Padiatrie, 2010, 222, 351-355.	0.2	84
16	Stat3 Programs Th17-Specific Regulatory T Cells to Control GN. Journal of the American Society of Nephrology: JASN, 2014, 25, 1291-1302.	3.0	68
17	Hematopoietic Stem Cell Transplantation as Treatment for Patients with DOCK8 Deficiency. Journal of Allergy and Clinical Immunology: in Practice, 2019, 7, 848-855.	2.0	67
18	Chronic Candida albicans Meningitis in a 4-Year-Old Girl with a Homozygous Mutation in the CARD9 Gene (Q295X). Pediatric Infectious Disease Journal, 2015, 34, 999-1002.	1.1	66

#	Article	IF	CITATIONS
19	<i>STAT3</i> Mutation in the Original Patient with Job's Syndrome. New England Journal of Medicine, 2007, 357, 1667-1668.	13.9	64
20	Successful Combination of Sequential Gene Therapy and Rescue Allo-HSCT in Two Children with X-CGD - Importance of Timing. Current Gene Therapy, 2015, 15, 416-427.	0.9	61
21	A Novel Gain-of-Function IKBA Mutation Underlies Ectodermal Dysplasia with Immunodeficiency and Polyendocrinopathy. Journal of Clinical Immunology, 2013, 33, 1088-1099.	2.0	60
22	The Hyper IgE Syndrome and Mutations in TYK2. Immunity, 2007, 26, 535.	6.6	57
23	Molecular analysis of the MVK and TNFRSF1A genes in patients with a clinical presentation typical of the hyperimmunoglobulinemia D with periodic fever syndrome: A low-penetrance TNFRSF1A variant in a heterozygous MVK carrier possibly influences the phenot. Arthritis and Rheumatism, 2004, 50, 1951-1958.	6.7	41
24	Heterozygous signal transducer and activator of transcription 3 mutations in hyper-IgE syndrome result in altered B-cell maturation. Journal of Allergy and Clinical Immunology, 2012, 129, 559-562.e2.	1.5	41
25	Lung Parenchyma Surgery in Autosomal Dominant Hyper-IgE Syndrome. Journal of Clinical Immunology, 2013, 33, 896-902.	2.0	39
26	Key findings to expedite the diagnosis of hyperâ€lgE syndromes in infants and young children. Pediatric Allergy and Immunology, 2016, 27, 177-184.	1.1	39
27	Clinical and Immunological Correction of DOCK8 Deficiency by Allogeneic Hematopoietic Stem Cell Transplantation Following a Reduced Toxicity Conditioning Regimen. Pediatric Hematology and Oncology, 2012, 29, 585-594.	0.3	38
28	Electrical impedance spectroscopy for the characterization of skin barrier in atopic dermatitis. Allergy: European Journal of Allergy and Clinical Immunology, 2021, 76, 3066-3079.	2.7	33
29	Impaired memory Bâ€cell development and antibody maturation with a skewing toward IgE in patients with STAT3 hyperâ€lgE syndrome. Allergy: European Journal of Allergy and Clinical Immunology, 2019, 74, 2394-2405.	2.7	30
30	STAT1 Gain-of-Function and Dominant Negative STAT3 Mutations Impair IL-17 and IL-22 Immunity Associated with CMC. Journal of Investigative Dermatology, 2018, 138, 711-714.	0.3	29
31	Impact of highâ€altitude therapy on typeâ€2 immune responses in asthma patients. Allergy: European Journal of Allergy and Clinical Immunology, 2020, 75, 84-94.	2.7	28
32	Lung function improvement and airways inflammation reduction in asthmatic children after a rehabilitation program at moderate altitude. Pediatric Allergy and Immunology, 2017, 28, 768-775.	1.1	24
33	Autosomal-dominant primary immunodeficiencies. Current Opinion in Hematology, 2005, 12, 22-30.	1.2	20
34	Beneficial IFN-α treatment of tumorous herpes simplex blepharoconjunctivitis in dedicator of cytokinesis 8 deficiency. Journal of Allergy and Clinical Immunology, 2014, 133, 1456-1458.	1.5	19
35	Identification of a novel mevalonate kinase gene mutation in combination with the common MVK V377I substitution and the low-penetrance TNFRSF1A R92Q mutation. European Journal of Human Genetics, 2005, 13, 510-512.	1.4	17
36	No Indication for a Defect in Toll-Like Receptor Signaling in Patients with Hyper-IgE Syndrome. Journal of Clinical Immunology, 2005, 25, 321-328.	2.0	16

#	Article	IF	CITATIONS
37	Lung disease in STAT 3 hyperâ€lgE syndrome requires intense therapy. Allergy: European Journal of Allergy and Clinical Immunology, 2019, 74, 1691-1702.	2.7	15
38	Toll-Like Receptor Stimulation Induces Higher TNF-α Secretion in Peripheral Blood Mononuclear Cells from Patients with Hyper IgE Syndrome. International Archives of Allergy and Immunology, 2008, 146, 190-194.	0.9	14
39	Periodic fever due to a novel TNFRSF1A mutation in a heterozygous Chinese carrier of MEFV E148Q. British Journal of Rheumatology, 2004, 43, 526-527.	2.5	13
40	Inborn Error of Immunity or Atopic Dermatitis: When to be Concerned and How to Investigate. Journal of Allergy and Clinical Immunology: in Practice, 2021, 9, 1501-1507.	2.0	13
41	Reduced Immunoglobulin (Ig) G Response to Staphylococcus aureus in STAT3 Hyper-IgE Syndrome. Clinical Infectious Diseases, 2017, 64, 1279-1282.	2.9	10
42	Rescue of STAT3 Function in Hyper-IgE Syndrome Using Adenine Base Editing. CRISPR Journal, 2021, 4, 178-190.	1.4	10
43	Challenges of genetic counseling in patients with autosomal dominant diseases, such as the hyper-IgE syndrome (STAT3-HIES). Journal of Allergy and Clinical Immunology, 2012, 130, 1426-1428.	1.5	9
44	Rituximab-induced long-term remission in two children with SLE. European Journal of Pediatrics, 2006, 166, 177-181.	1.3	7
45	Class Switch Recombination Defects: impact on B cell maturation and antibody responses. Clinical Immunology, 2021, 222, 108638.	1.4	6
46	Somatic alterations compromised molecular diagnosis of DOCK8 hyper-IgE syndrome caused by a novel intronic splice site mutation. Scientific Reports, 2018, 8, 16719.	1.6	5
47	Retained primary teeth in STAT3 hyper-IgE syndrome: early intervention in childhood is essential. Orphanet Journal of Rare Diseases, 2020, 15, 244.	1.2	5
48	Perception of climate change in patients with chronic lung disease. PLoS ONE, 2017, 12, e0186632.	1.1	4
49	HSCT for DOCK8 Deficiency - an International Study on 74 Patients. Biology of Blood and Marrow Transplantation, 2016, 22, S103-S104.	2.0	2
50	Preventing Rejection in Primary Immunodeficiency Patients With Donor Lymphocyte Infusions. Biology of Blood and Marrow Transplantation, 2011, 17, S180.	2.0	1
51	Impaired Humoral Immune Response to a T-Cell-Dependent Neoantigen in Patients with ComÃʿL-Netherton Syndrome. Clinical Immunology, 2006, 119, S200-S201.	1.4	Ο
52	ComÃ l-Netherton Syndrome - New Insight Into The Molecular Basis of this Rare Syndrome Characterized by Atopic Diathesis and Immune Deficiency. Journal of Allergy and Clinical Immunology, 2007, 119, S11.	1.5	0
53	S.7. IL-17 Signaling Defects in Patients with Candida Albicans and/or Staphylococcus Aureus Infections. Clinical Immunology, 2009, 131, S135.	1.4	0
54	Impaired TH17 Cell Production In Patients With Chronic Candida albicans Infections. Journal of Allergy and Clinical Immunology, 2010, 125, AB55.	1.5	0

#	Article	IF	CITATIONS
55	The Hyper-IgE Syndromes: Evaluation Of Over 80 Patients With Eczema And Elevated Serum Ige. Journal of Allergy and Clinical Immunology, 2011, 127, AB134-AB134.	1.5	0
56	Multi-Institutional Experience of HSCT for DOCK8 Deficiency. Biology of Blood and Marrow Transplantation, 2012, 18, S228.	2.0	0
57	A2.23â€Impaired Natural Killer Cell Function in DOCK8 Deficiency. Annals of the Rheumatic Diseases, 2013, 72, A12.3-A13.	0.5	Ο
58	Outcome of HSCT in Adolescents and Young Adults with Non-SCID Primary Immunodeficiencies. Biology of Blood and Marrow Transplantation, 2016, 22, S235.	2.0	0
59	Molecular Assessment of Staphylococcus Aureus Strains in STAT3 Hyper-IgE Syndrome Patients. Journal of Clinical Immunology, 0, , .	2.0	0