Carlos SÃnchez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2306475/publications.pdf

Version: 2024-02-01

23 papers 1,307 citations

16 h-index 23 g-index

23 all docs $\begin{array}{c} 23 \\ \text{docs citations} \end{array}$

 $\begin{array}{c} 23 \\ times \ ranked \end{array}$

1428 citing authors

#	Article	IF	CITATIONS
1	TiS ₃ Transistors with Tailored Morphology and Electrical Properties. Advanced Materials, 2015, 27, 2595-2601.	11.1	193
2	Ultrahigh Photoresponse of Few‣ayer TiS ₃ Nanoribbon Transistors. Advanced Optical Materials, 2014, 2, 641-645.	3.6	189
3	Electronics and optoelectronics of quasi-1D layered transition metal trichalcogenides. 2D Materials, 2017, 4, 022003.	2.0	146
4	Titanium trisulfide (TiS3): a 2D semiconductor with quasi-1D optical and electronic properties. Scientific Reports, 2016, 6, 22214.	1.6	107
5	Temperature-Dependent Raman Spectroscopy of Titanium Trisulfide (TiS ₃) Nanoribbons and Nanosheets. ACS Applied Materials & Samp; Interfaces, 2015, 7, 24185-24190.	4.0	89
6	Optical properties of titanium trisulphide (TiS3) thin films. Thin Solid Films, 2013, 535, 398-401.	0.8	85
7	Polarizationâ€Sensitive and Broadband Photodetection Based on a Mixedâ€Dimensionality TiS ₃ /Si p–n Junction. Advanced Optical Materials, 2018, 6, 1800351.	3.6	64
8	Electronic Bandgap and Exciton Binding Energy of Layered Semiconductor TiS ₃ . Advanced Electronic Materials, 2015, 1, 1500126.	2.6	59
9	High Current Density Electrical Breakdown of TiS ₃ Nanoribbonâ€Based Fieldâ€Effect Transistors. Advanced Functional Materials, 2017, 27, 1605647.	7.8	52
10	On the Photoelectrochemical Properties of TiS3 Films. Energy Procedia, 2012, 22, 48-52.	1.8	47
11	Large birefringence and linear dichroism in TiS ₃ nanosheets. Nanoscale, 2018, 10, 12424-12429.	2.8	40
12	Titanium trisulphide (TiS ₃) nanoribbons for easy hydrogen photogeneration under visible light. Journal of Materials Chemistry A, 2015, 3, 7959-7965.	5.2	39
13	Hydrogen Photoassisted Generation by Visible Light and an Earth Abundant Photocatalyst: Pyrite (FeS ₂). Journal of Physical Chemistry C, 2016, 120, 9547-9552.	1.5	37
14	Strain-induced band gap engineering in layered TiS3. Nano Research, 2018, 11, 225-232.	5.8	36
15	Dielectrophoretic assembly of liquid-phase-exfoliated TiS ₃ nanoribbons for photodetecting applications. Chemical Communications, 2017, 53, 6164-6167.	2.2	22
16	Chemical vapor deposition growth of boron–carbon–nitrogen layers from methylamine borane thermolysis products. Nanotechnology, 2018, 29, 025603.	1.3	21
17	Ultrathin Transparent B–C–N Layers Grown on Titanium Substrates with Excellent Electrocatalytic Activity for the Oxygen Evolution Reaction. ACS Applied Energy Materials, 2020, 3, 1922-1932.	2.5	16
18	Raman Fingerprint of Pressure-Induced Phase Transitions in TiS ₃ Nanoribbons: Implications for Thermal Measurements under Extreme Stress Conditions. ACS Applied Nano Materials, 2020, 3, 8794-8802.	2.4	15

#	Article	IF	CITATIONS
19	Multi-terminal electronic transport in boron nitride encapsulated TiS ₃ nanosheets. 2D Materials, 2020, 7, 015009.	2.0	14
20	Tunable Photodetectors via In Situ Thermal Conversion of TiS3 to TiO2. Nanomaterials, 2020, 10, 711.	1.9	14
21	Ternary transition titanium-niobium trisulfide as photoanode for assisted water splitting. Catalysis Today, 2019, 321-322, 107-112.	2.2	11
22	Improving the Efficiency of Thin Film Thermoelectric Generators under Constant Heat Flux by Using Substrates of Low Thermal Conductivity. Physica Status Solidi - Rapid Research Letters, 2018, 12, 1800277.	1.2	7
23	On the van der Pauw's method applied to the measurement of low thermal conductivity materials. Review of Scientific Instruments, 2016, 87, 084902.	0.6	4