Przemys<mark>Å,</mark>aw WoÅ^ony

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2306001/publications.pdf

Version: 2024-02-01

24 papers 881 citations

623734 14 h-index 24 g-index

24 all docs

24 docs citations

times ranked

24

564 citing authors

#	Article	IF	Citations
1	Luminescent Nanothermometer Operating at Very High Temperatureâ€"Sensing up to 1000 K with Upconverting Nanoparticles (Yb ³⁺ /Tm ³⁺). ACS Applied Materials & Interfaces, 2020, 12, 43933-43941.	8.0	130
2	Optical Vacuum Sensor Based on Lanthanide Upconversionâ€"Luminescence Thermometry as a Tool for Ultralow Pressure Sensing. Advanced Materials Technologies, 2020, 5, 1901091.	5.8	102
3	Optical Pressure Sensor Based on the Emission and Excitation Band Width (fwhm) and Luminescence Shift of Ce ³⁺ -Doped Fluorapatiteâ€"High-Pressure Sensing. ACS Applied Materials & Lamp; Interfaces, 2019, 11, 4131-4138.	8.0	88
4	Lanthanide Upconverted Luminescence for Simultaneous Contactless Optical Thermometry and Manometry–Sensing under Extreme Conditions of Pressure and Temperature. ACS Applied Materials & Lamp; Interfaces, 2020, 12, 40475-40485.	8.0	77
5	Praseodymium doped YF3:Pr3+ nanoparticles as optical thermometer based on luminescence intensity ratio (LIR) \hat{a} \in Studies in visible and NIR range. Journal of Luminescence, 2019, 214, 116571.	3.1	65
6	Optical pressure sensing in vacuum and high-pressure ranges using lanthanide-based luminescent thermometer–manometer. Journal of Materials Chemistry C, 2021, 9, 4643-4651.	5.5	56
7	Optical pressure nano-sensor based on lanthanide doped SrB2O4:Sm2+ luminescence – Novel high-pressure nanomanometer. Sensors and Actuators B: Chemical, 2018, 273, 585-591.	7.8	48
8	Tm ²⁺ Activated SrB ₄ O ₇ Bifunctional Sensor of Temperature and Pressure—Highly Sensitive, Multiâ€Parameter Luminescence Thermometry and Manometry. Advanced Optical Materials, 2021, 9, 2101507.	7.3	40
9	Huge enhancement of Sm ²⁺ emission <i>via</i> Eu ²⁺ energy transfer in a SrB ₄ O ₇ pressure sensor. Journal of Materials Chemistry C, 2020, 8, 4810-4817.	5. 5	36
10	Supersensitive Ratiometric Thermometry and Manometry Based on Dualâ€Emitting Centers in Eu ²⁺ /Sm ²⁺ â€Doped Strontium Tetraborate Phosphors. Advanced Optical Materials, 2022, 10, .	7.3	35
11	Emission color tuning and phase transition determination based on high-pressure up-conversion luminescence in YVO4: Yb3+, Er3+ nanoparticles. Journal of Luminescence, 2019, 209, 321-327.	3.1	34
12	Improving temperature resolution of luminescent nanothermometers working in the near-infrared range using non-thermally coupled levels of Yb3+ & Tm3+. Journal of Luminescence, 2020, 228, 117643.	3.1	32
13	Bifunctional magnetic-upconverting luminescent cellulose fibers for anticounterfeiting purposes. Journal of Alloys and Compounds, 2020, 829, 154456.	5. 5	17
14	NIR emission of lanthanides for ultrasensitive luminescence manometryâ€"Er ³⁺ -activated optical sensor of high pressure. Dalton Transactions, 2021, 50, 14864-14871.	3.3	16
15	Effect of various surfactants on changes in the emission color chromaticity in upconversion YVO 4: Yb 3+, Er 3+ nanoparticles. Optical Materials, 2018, 76, 400-406.	3.6	15
16	Influence of boric acid/Sr2+ ratio on the structure and luminescence properties (colour tuning) of nano-sized, complex strontium borates doped with Sm2+ and Sm3+ ions. Optical Materials, 2018, 83, 245-251.	3.6	14
17	Boltzmann vs. non-Boltzmann (non-linear) thermometry - Yb3+-Er3+ activated dual-mode thermometer and phase transition sensor via second harmonic generation. Journal of Alloys and Compounds, 2022, 906, 164329.	5.5	14
18	Influence of matrix on the luminescence properties of Eu2+/Eu3+ doped strontium borates: SrB4O7, SrB2O4 and Sr3(BO3)2, exhibiting multicolor tunable emission. Journal of Alloys and Compounds, 2020, 822, 153511.	5.5	13

#	Article	lF	CITATIONS
19	High-pressure luminescence of monoclinic and triclinic GdBO3: Eu3+. Ceramics International, 2020, 46, 26368-26376.	4.8	13
20	Optically active plasmonic cellulose fibers based on Au nanorods for SERS applications. Carbohydrate Polymers, 2022, 279, 119010.	10.2	13
21	Y ₂ (Ge,Si)O ₅ :Pr phosphors: multimodal temperature and pressure sensors shaped by bandgap management. Journal of Materials Chemistry C, 2021, 9, 13818-13831.	5.5	10
22	Stress to distress: Triboluminescence and pressure luminescence of lanthanide diketonates. Chemical Engineering Journal Advances, 2022, 11, 100326.	5.2	6
23	Adenosine capped CaF2:Eu3+ nanocrystals and their applications in permanganate detection. Optical Materials, 2020, 107, 110048.	3.6	4
24	Generation of Pure Green Up-Conversion Luminescence in Er3+ Doped and Yb3+-Er3+ Co-Doped YVO4 Nanomaterials under 785 and 975 nm Excitation. Nanomaterials, 2022, 12, 799.	4.1	3