
Karrera Y Djoko

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2305627/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The suppressor of copper sensitivity protein C from <i>Caulobacter crescentus</i> is a trimeric disulfide isomerase that binds copper(I) with subpicomolar affinity. Acta Crystallographica Section D: Structural Biology, 2022, 78, 337-352.	1.1	3
2	Streptococcus pyogenes Hijacks Host Clutathione for Growth and Innate Immune Evasion. MBio, 2022, 13, e0067622.	1.8	15
3	Copper Cytotoxicity: Cellular Casualties of Noncognate Coordination Chemistry. MBio, 2022, 13, .	1.8	7
4	Role of Glutathione in Buffering Excess Intracellular Copper in <i>Streptococcus pyogenes</i> . MBio, 2020, 11, .	1.8	40
5	Handling of nutrient copper in the bacterial envelope. Metallomics, 2019, 11, 50-63.	1.0	51
6	Group A <i>Streptococcus</i> co-ordinates manganese import and iron efflux in response to hydrogen peroxide stress. Biochemical Journal, 2019, 476, 595-611.	1.7	20
7	Copper lons and Coordination Complexes as Novel Carbapenem Adjuvants. Antimicrobial Agents and Chemotherapy, 2018, 62, .	1.4	31
8	Transition Metal Homeostasis in Streptococcus pyogenes and Streptococcus pneumoniae. Advances in Microbial Physiology, 2017, 70, 123-191.	1.0	32
9	The PerR-Regulated P _{1B-4} -Type ATPase (PmtA) Acts as a Ferrous Iron Efflux Pump in Streptococcus pyogenes. Infection and Immunity, 2017, 85, .	1.0	24
10	Interplay between tolerance mechanisms to copper and acid stress in <i>Escherichia coli</i> . Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 6818-6823.	3.3	57
11	Copper(II)-bis(thiosemicarbazonato) complexes as anti-chlamydial agents. Pathogens and Disease, 2017, 75, .	0.8	5
12	Formaldehyde Stress Responses in Bacterial Pathogens. Frontiers in Microbiology, 2016, 7, 257.	1.5	102
13	Structural basis of thiol-based regulation of formaldehyde detoxification in <i>H. influenzae</i> by a MerR regulator with no sensor region. Nucleic Acids Research, 2016, 44, 6981-6993.	6.5	9
14	The Role of Copper and Zinc Toxicity in Innate Immune Defense against Bacterial Pathogens. Journal of Biological Chemistry, 2015, 290, 18954-18961.	1.6	324
15	Copper(II)-Bis(Thiosemicarbazonato) Complexes as Antibacterial Agents: Insights into Their Mode of Action and Potential as Therapeutics. Antimicrobial Agents and Chemotherapy, 2015, 59, 6444-6453.	1.4	59
16	A genetic screen reveals a periplasmic copper chaperone required for nitrite reductase activity in pathogenic <i>Neisseria</i> . FASEB Journal, 2015, 29, 3828-3838.	0.2	16
17	Antimicrobial effects of copper(<scp>ii</scp>) bis(thiosemicarbazonato) complexes provide new insight into their biochemical mode of action. Metallomics, 2014, 6, 854-863.	1.0	38
18	Inhibition of respiratory Complex I by copper(<scp>ii</scp>)-bis(thiosemicarbazonato) complexes. Metallomics, 2014, 6, 2250-2259.	1.0	12

Karrera Y Djoko

#	Article	IF	CITATIONS
19	A Role for Lactate Dehydrogenases in the Survival of Neisseria gonorrhoeae in Human Polymorphonuclear Leukocytes and Cervical Epithelial Cells. Journal of Infectious Diseases, 2014, 210, 1311-1318.	1.9	23
20	Antimicrobial Action of Copper Is Amplified <i>via</i> Inhibition of Heme Biosynthesis. ACS Chemical Biology, 2013, 8, 2217-2223.	1.6	62
21	Characterization of an <i>ntrX</i> Mutant of Neisseria gonorrhoeae Reveals a Response Regulator That Controls Expression of Respiratory Enzymes in Oxidase-Positive Proteobacteria. Journal of Bacteriology, 2013, 195, 2632-2641.	1.0	36
22	A Glutathione-Dependent Detoxification System Is Required for Formaldehyde Resistance and Optimal Survival of <i>Neisseria meningitidis</i> in Biofilms. Antioxidants and Redox Signaling, 2013, 18, 743-755.	2.5	32
23	Phenotypic Characterization of a <i>copA</i> Mutant of Neisseria gonorrhoeae Identifies a Link between Copper and Nitrosative Stress. Infection and Immunity, 2012, 80, 1065-1071.	1.0	43
24	A novel nickel responsive MerR-like regulator, NimR, from Haemophilus influenzae. Metallomics, 2011, 3, 1009.	1.0	14
25	Novel Bacterial MerR-Like Regulators. Advances in Microbial Physiology, 2011, 58, 1-22.	1.0	24
26	Reaction Mechanisms of the Multicopper Oxidase CueO from <i>Escherichia coli</i> Support Its Functional Role as a Cuprous Oxidase. Journal of the American Chemical Society, 2010, 132, 2005-2015.	6.6	94
27	Electron paramagnetic resonance characterization of the copper-resistance protein PcoC from Escherichia coli. Journal of Biological Inorganic Chemistry, 2008, 13, 899-907.	1.1	6
28	Copper Resistance in <i>E. coli</i> : The Multicopper Oxidase PcoA Catalyzes Oxidation of Copper(I) in Cu ^I Cu ^{II} â€PcoC. ChemBioChem, 2008, 9, 1579-1582.	1.3	56
29	Conserved Mechanism of Copper Binding and Transfer. A Comparison of the Copper-Resistance Proteins PcoC fromEscherichia coliand CopC fromPseudomonas syringae. Inorganic Chemistry, 2007, 46, 4560-4568.	1.9	56
30	Aqueous Phase Separation in Giant Vesicles. Journal of the American Chemical Society, 2002, 124, 13374-13375.	6.6	76