Antonio Rosato

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/230562/publications.pdf

Version: 2024-02-01

48 papers 1,000 citations

331538 21 h-index 434063 31 g-index

49 all docs

49 docs citations

49 times ranked

777 citing authors

#	Article	IF	CITATIONS
1	Field Performance of HVAC System Under Healthy and Faulty Conditions During the Summer: Preliminary Development of a Simulation Model Based on Artificial Neural Networks. Smart Innovation, Systems and Technologies, 2022, , 183-196.	0.5	2
2	Energy Performances Assessment of Extruded and 3D Printed Polymers Integrated into Building Envelopes for a South Italian Case Study. Buildings, 2021, 11, 141.	1.4	10
3	Healthy and Faulty Experimental Performance of a Typical HVAC System under Italian Climatic Conditions: Artificial Neural Network-Based Model and Fault Impact Assessment. Energies, 2021, 14, 5362.	1.6	12
4	Energy performance of PVC-Coated polyester fabric as novel material for the building envelope: Model validation and a refurbishment case study. Journal of Building Engineering, 2021, 41, 102437.	1.6	9
5	Parametric Analysis of Solar Heating and Cooling Systems for Residential Applications. Heat Transfer Engineering, 2020, 41, 1052-1074.	1.2	4
6	Thermal model validation of an electric-driven smart window through experimental data and evaluation of the impact on a case study. Building and Environment, 2020, 181, 107134.	3.0	16
7	Virtual Reality for Smart Urban Lighting Design: Review, Applications and Opportunities. Energies, 2020, 13, 3809.	1.6	36
8	Experimental Calibration and Validation of a Simulation Model for Fault Detection of HVAC Systems and Application to a Case Study. Energies, 2020, 13, 3948.	1.6	18
9	Integration of Micro-Cogeneration Units and Electric Storages into a Micro-Scale Residential Solar District Heating System Operating with a Seasonal Thermal Storage. Energies, 2020, 13, 5456.	1.6	8
10	Energy, environmental and economic dynamic assessment of a solar hybrid heating network operating with a seasonal thermal energy storage serving an Italian small-scale residential district: Influence of solar and back-up technologies. Thermal Science and Engineering Progress, 2020, 19, 100591.	1.3	14
11	Electric-driven windows for historical buildings retrofit: Energy and visual sensitivity analysis for different control logics. Journal of Building Engineering, 2020, 31, 101398.	1.6	16
12	Impact of solar field design and back-up technology on dynamic performance of a solar hybrid heating network integrated with a seasonal borehole thermal energy storage serving a small-scale residential district including plug-in electric vehicles. Renewable Energy, 2020, 154, 684-703.	4.3	28
13	Dynamic simulation of a solar heating and cooling system including a seasonal storage serving a small Italian residential district. Thermal Science, 2020, 24, 3555-3568.	0.5	4
14	A Solar Thermal Application for Mongolian Detached Houses: An Energy, Environmental, and Economic Analysis Based on Dynamic Simulations. Buildings, 2019, 9, 185.	1.4	1
15	Impact of seasonal thermal energy storage design on the dynamic performance of a solar heating system serving a small-scale Italian district composed of residential and school buildings. Journal of Energy Storage, 2019, 25, 100889.	3.9	33
16	Effects of solar field design on the energy, environmental and economic performance of a solar district heating network serving Italian residential and school buildings. Renewable Energy, 2019, 143, 596-610.	4.3	39
17	Energy, economic and environmental performance simulation of a hybrid renewable microgeneration system with neural network predictive control. AEJ - Alexandria Engineering Journal, 2018, 57, 455-473.	3.4	33
18	Thermo-economic sensitivity analysis by dynamic simulations of a small Italian solar district heating system with a seasonal borehole thermal energy storage. Energy, 2018, 143, 757-771.	4.5	55

#	Article	IF	CITATIONS
19	Performance of Different Back-up Technologies for Micro-Scale Solar Hybrid District Heating Systems with Long-term Thermal Energy Storage. Energy Procedia, 2018, 149, 565-574.	1.8	1
20	Model Analysis of Solar Thermal System with the Effect of Dust Deposition on the Collectors. Energies, 2018, 11, 1795.	1.6	8
21	Building-integrated trigeneration system: Energy, environmental and economic dynamic performance assessment for Italian residential applications. Renewable and Sustainable Energy Reviews, 2017, 68, 920-933.	8.2	41
22	Smart thermal grid with integration of distributed and centralized solar energy systems. Energy, 2017, 122, 471-481.	4.5	39
23	Energy, Environmental and Economic Effects of Electric Vehicle Charging on the Performance of a Residential Building-integrated Micro-trigeneration System. Energy Procedia, 2017, 111, 699-709.	1.8	21
24	The Micro-cogeneration and Emission Control and Related Utilization Field. Lecture Notes in Energy, 2017, , 795-834.	0.2	3
25	Energy, Environmental and Economic Performance of a Micro-trigeneration System upon Varying the Electric Vehicle Charging Profiles. Journal of Sustainable Development of Energy, Water and Environment Systems, 2017, 5, 309-331.	0.9	4
26	Parametric Analysis of a Solar Heating and Cooling System for an Italian Multi-Family House. International Journal of Heat and Technology, 2016, 34, S458-S464.	0.3	4
27	A Review of Electrochromic Windows for Residential Applications. International Journal of Heat and Technology, 2016, 34, S481-S488.	0.3	28
28	Dynamic simulation of a micro-trigeneration system serving an Italian multi-family house: energy, environmental and economic analyses. International Journal of Heat and Technology, 2016, 34, S295-S302.	0.3	1
29	Parametric Analysis of a Solar Heating and Cooling System for an Italian Multi-Family House. International Journal of Heat and Technology, 2016, 34, S458-S464.	0.3	2
30	Dynamic Simulation of a Micro-Trigeneration System Serving an Italian Multi-Family House: Energy, Environmental and Economic Analyses. International Journal of Heat and Technology, 2016, 34, S295-S302.	0.3	2
31	Energy, Environmental and Economic Dynamic Simulation of a Micro-Cogeneration System Serving an Italian Multi-Family House. Energy Procedia, 2015, 78, 1141-1146.	1.8	8
32	Retrofitting Solutions for Energy Saving in a Historical Building Lighting System. Energy Procedia, 2015, 78, 2669-2674.	1.8	21
33	Daylighting Contribution for Energy Saving in a Historical Building. Energy Procedia, 2015, 78, 1257-1262.	1.8	8
34	Energy and Economic Evaluation of Retrofit Actions on an Existing Historical Building in the South of Italy by Using a Dynamic Simulation Software. Energy Procedia, 2015, 78, 741-746.	1.8	18
35	Yearly operation of a building-integrated microcogeneration system in south Italy: energy and economic analyses. International Journal of Low-Carbon Technologies, 2014, 9, 331-346.	1.2	10
36	Load sharing with a local thermal network fed by a microcogenerator: Thermo-economic optimization by means of dynamic simulations. Applied Thermal Engineering, 2014, 71, 628-635.	3.0	26

3

#	Article	IF	CITATIONS
37	Dynamic performance assessment of a residential building-integrated cogeneration system under different boundary conditions. Part II: Environmental and economic analyses. Energy Conversion and Management, 2014, 79, 749-770.	4.4	28
38	Dynamic performance assessment of a residential building-integrated cogeneration system under different boundary conditions. Part I: Energy analysis. Energy Conversion and Management, 2014, 79, 731-748.	4.4	39
39	Experimental analysis of a micro-trigeneration system composed of a micro-cogenerator coupled with an electric chiller. Applied Thermal Engineering, 2014, 73, 1309-1322.	3.0	21
40	Influence of climatic conditions and control logic on NOx and CO emissions of a micro-cogeneration unit serving an Italian residential building. Applied Thermal Engineering, 2014, 71, 858-871.	3.0	14
41	Performance assessment of a micro-cogeneration system under realistic operating conditions. Energy Conversion and Management, 2013, 70, 149-162.	4.4	32
42	Energy performance of a micro-cogeneration device during transient and steady-state operation: Experiments and simulations. Applied Thermal Engineering, 2013, 52, 478-491.	3.0	32
43	Dynamic performance assessment of a building-integrated cogeneration system for an Italian residential application. Energy and Buildings, 2013, 64, 343-358.	3.1	31
44	Energy, environmental and economic dynamic performance assessment of different micro-cogeneration systems in a residential application. Applied Thermal Engineering, 2013, 59, 599-617.	3.0	73
45	Preliminary experimental characterization of a three-phase absorption heat pump. International Journal of Refrigeration, 2013, 36, 717-729.	1.8	22
46	Energy performance of a residential building-integrated micro-cogeneration system upon varying thermal load and control logic. International Journal of Low-Carbon Technologies, 2013, , ctt075.	1.2	5
47	Experimental results of a micro-trigeneration installation. Applied Thermal Engineering, 2012, 38, 78-90.	3.0	56
48	Calibration and validation of a model for simulating thermal and electric performance of an internal combustion engine-based micro-cogeneration device. Applied Thermal Engineering, 2012, 45-46, 79-98.	3.0	63