Barbara Stauch Slusher

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2305507/publications.pdf Version: 2024-02-01

		31976	32842
210	12,579	53	100
papers	citations	h-index	g-index
217	217	217	14873
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Dendrimer-2PMPA selectively blocks upregulated microglial GCPII activity and improves cognition in a mouse model of multiple sclerosis. Nanotheranostics, 2022, 6, 126-142.	5.2	18
2	Dendrimer-2PMPA Delays Muscle Function Loss and Denervation in a Murine Model of Amyotrophic Lateral Sclerosis. Neurotherapeutics, 2022, 19, 274-288.	4.4	9
3	Clinical development of metabolic inhibitors for oncology. Journal of Clinical Investigation, 2022, 132, .	8.2	59
4	Thieno[2,3- <i>d</i>]pyrimidine-Based Positive Allosteric Modulators of Human Mas-Related G Protein-Coupled Receptor X1 (MRGPRX1). Journal of Medicinal Chemistry, 2022, 65, 3218-3228.	6.4	8
5	High-Throughput Activity Assay for Screening Inhibitors of the SARS-CoV-2 Mac1 Macrodomain. ACS Chemical Biology, 2022, 17, 17-23.	3.4	28
6	Comprehensive Metabolic Profiling of MYC-Amplified Medulloblastoma Tumors Reveals Key Dependencies on Amino Acid, Tricarboxylic Acid and Hexosamine Pathways. Cancers, 2022, 14, 1311.	3.7	10
7	Neutral sphingomyelinase 2 inhibition attenuates extracellular vesicle release and improves neurobehavioral deficits in murine HIV. Neurobiology of Disease, 2022, 169, 105734.	4.4	11
8	Dual mTORC1/2 inhibition compromises cell defenses against exogenous stress potentiating Obatoclax-induced cytotoxicity in atypical teratoid/rhabdoid tumors. Cell Death and Disease, 2022, 13, 410.	6.3	4
9	A Novel Oral Glutamate Carboxypeptidase II Inhibitor for the Treatment of Inflammatory Bowel Disease. FASEB Journal, 2022, 36, .	0.5	0
10	The pathogenesis of, and pharmacological treatment for, Canavan disease. Drug Discovery Today, 2022, 27, 2467-2483.	6.4	10
11	Inhibition of glutamate-carboxypeptidase-II in dorsolateral prefrontal cortex: potential therapeutic target for neuroinflammatory cognitive disorders. Molecular Psychiatry, 2022, 27, 4252-4263.	7.9	13
12	Glutamine antagonist JHU083 improves psychosocial behavior and sleep deficits in EcoHIV-infected mice. Brain, Behavior, & Immunity - Health, 2022, 23, 100478.	2.5	1
13	An efficient synthetic route to l-γ-methyleneglutamine and its amide derivatives, and their selective anticancer activity. RSC Advances, 2021, 11, 7115-7128.	3.6	1
14	Small Molecule Inhibitors Targeting Biosynthesis of Ceramide, the Central Hub of the Sphingolipid Network. Journal of Medicinal Chemistry, 2021, 64, 279-297.	6.4	26
15	FSMP-18. COMPREHENSIVE METABOLIC PROFILING OF HIGH MYC MEDULLOBLASTOMA REVEALS KEY DIFFERENCES BETWEEN IN VITRO AND IN VIVO GLUCOSE AND GLUTAMINE USAGE. Neuro-Oncology Advances, 2021, 3, i19-i19.	0.7	0
16	Novel Glutamine Antagonist JHU395 Suppresses MYC-Driven Medulloblastoma Growth and Induces Apoptosis. Journal of Neuropathology and Experimental Neurology, 2021, 80, 336-344.	1.7	16
17	Characterization of extracellular vesicles and synthetic nanoparticles with four orthogonal singleâ€particle analysis platforms. Journal of Extracellular Vesicles, 2021, 10, e12079.	12.2	97
18	TORC1/2 kinase inhibition depletes glutathione and synergizes with carboplatin to suppress the growth of MYC-driven medulloblastoma. Cancer Letters, 2021, 504, 137-145.	7.2	5

#	Article	IF	CITATIONS
19	Abstract 2321: Comprehensive metabolic profiling of high MYC medulloblastoma revealed key differences between in vitro and in vivo in glucose and glutamine usage. , 2021, , .		0
20	OTME-9. Comprehensive Metabolic Profiling Of high MYC Medulloblastoma Reveals Key Differences Between In Vitro And In Vivo Glucose And Glutamine Usage. Neuro-Oncology Advances, 2021, 3, ii15-ii15.	0.7	1
21	Regulatory T cells reduce endothelial neutral sphingomyelinase 2 to prevent Tâ€cell migration into tumors. European Journal of Immunology, 2021, 51, 2317-2329.	2.9	3
22	Nipping disease in the bud: nSMase2 inhibitors as therapeutics in extracellular vesicle-mediated diseases. Drug Discovery Today, 2021, 26, 1656-1668.	6.4	21
23	Glutamine Antagonist GA-607 Causes a Dramatic Accumulation of FGAR which can be used to Monitor Target Engagement. Current Drug Metabolism, 2021, 22, 735-745.	1.2	4
24	High Throughput Screening Cascade To Identify Human Aspartate N-Acetyltransferase (ANAT) Inhibitors for Canavan Disease. ACS Chemical Neuroscience, 2021, 12, 3445-3455.	3.5	5
25	Model studies towards prodrugs of the glutamine antagonist 6-diazo-5-oxo-l-norleucine (DON) containing a diazo precursor. Bioorganic and Medicinal Chemistry Letters, 2021, 50, 128321.	2.2	2
26	The glutamine antagonist prodrug JHU-083 slows malignant glioma growth and disrupts mTOR signaling. Neuro-Oncology Advances, 2021, 3, vdaa149.	0.7	21
27	Inhibition of neutral sphingomyelinase 2 reduces extracellular vesicle release from neurons, oligodendrocytes, and activated microglial cells following acute brain injury. Biochemical Pharmacology, 2021, 194, 114796.	4.4	17
28	Glutamate Carboxypeptidase II in Aging Rat Prefrontal Cortex Impairs Working Memory Performance. Frontiers in Aging Neuroscience, 2021, 13, 760270.	3.4	12
29	DCCâ€related developmental effects of abused―versus therapeuticâ€like amphetamine doses in adolescence. Addiction Biology, 2020, 25, e12791.	2.6	20
30	The Novel Glutamine Antagonist Prodrug JHU395 Has Antitumor Activity in Malignant Peripheral Nerve Sheath Tumor. Molecular Cancer Therapeutics, 2020, 19, 397-408.	4.1	18
31	Structure–Activity Relationships for a Series of (Bis(4-fluorophenyl)methyl)sulfinyl Alkyl Alicyclic Amines at the Dopamine Transporter: Functionalizing the Terminal Nitrogen Affects Affinity, Selectivity, and Metabolic Stability. Journal of Medicinal Chemistry, 2020, 63, 2343-2357.	6.4	20
32	Looking for Drugs in All the Wrong Places: Use of GCPII Inhibitors Outside the Brain. Neurochemical Research, 2020, 45, 1256-1267.	3.3	15
33	Inhibition of neutral sphingomyelinase 2 promotes remyelination. Science Advances, 2020, 6, .	10.3	23
34	Sowing the Seeds of Discovery: Tau-Propagation Models of Alzheimer's Disease. ACS Chemical Neuroscience, 2020, 11, 3499-3509.	3.5	7
35	Glutamine Antagonist JHU-083 Normalizes Aberrant Hippocampal Glutaminase Activity and Improves Cognition in APOE4 Mice. Journal of Alzheimer's Disease, 2020, 77, 437-447.	2.6	15
36	Allosteric kidney-type glutaminase (GLS) inhibitors with a mercaptoethyl linker. Bioorganic and Medicinal Chemistry, 2020, 28, 115698.	3.0	6

#	Article	IF	CITATIONS
37	Targeting Mitochondria in Tumor-Associated Macrophages using a Dendrimer-Conjugated TSPO Ligand that Stimulates Antitumor Signaling in Glioblastoma. Biomacromolecules, 2020, 21, 3909-3922.	5.4	23
38	Bioenergetic adaptations to HIV infection. Could modulation of energy substrate utilization improve brain health in people living with HIV-1?. Experimental Neurology, 2020, 327, 113181.	4.1	6
39	Novel Human Neutral Sphingomyelinase 2 Inhibitors as Potential Therapeutics for Alzheimer's Disease. Journal of Medicinal Chemistry, 2020, 63, 6028-6056.	6.4	26
40	Astrocytes deliver CK1 to neurons via extracellular vesicles in response to inflammation promoting the translation and amyloidogenic processing of APP. Journal of Extracellular Vesicles, 2020, 10, e12035.	12.2	29
41	Targeting glutamine metabolism enhances tumor-specific immunity by modulating suppressive myeloid cells. Journal of Clinical Investigation, 2020, 130, 3865-3884.	8.2	230
42	JHU-083 selectively blocks glutaminase activity in brain CD11b+ cells and prevents depression-associated behaviors induced by chronic social defeat stress. Neuropsychopharmacology, 2019, 44, 683-694.	5.4	38
43	A novel and potent brain penetrant inhibitor of extracellular vesicle release. British Journal of Pharmacology, 2019, 176, 3857-3870.	5.4	33
44	Orally bioavailable glutamine antagonist prodrug JHU-083 penetrates mouse brain and suppresses the growth of MYC-driven medulloblastoma. Translational Oncology, 2019, 12, 1314-1322.	3.7	46
45	Glutamine Antagonist JHU083 Normalizes Aberrant Glutamate Production and Cognitive Deficits in the EcoHIV Murine Model of HIV-Associated Neurocognitive Disorders. Journal of NeuroImmune Pharmacology, 2019, 14, 391-400.	4.1	29
46	Glutamine blockade induces divergent metabolic programs to overcome tumor immune evasion. Science, 2019, 366, 1013-1021.	12.6	643
47	Spontaneous Loss-of-Function Dock2 Mutation Alters Murine Colitis Sensitivity and Is a Confounding Variable in Inflammatory Bowel Disease Research. Crohn's & Colitis 360, 2019, 1, .	1.1	2
48	Glutamine antagonism attenuates physical and cognitive deficits in a model of MS. Neurology: Neuroimmunology and NeuroInflammation, 2019, 6, .	6.0	12
49	Discovery of Benzamidine- and 1-Aminoisoquinoline-Based Human MAS-Related G-Protein-Coupled Receptor X1 (MRGPRX1) Agonists. Journal of Medicinal Chemistry, 2019, 62, 8631-8641.	6.4	19
50	Enhanced Oral Bioavailability of 2-(Phosphonomethyl)-pentanedioic Acid (2-PMPA) from its (5-Methyl-2-oxo-1,3-dioxol-4-yl)methyl (ODOL)-Based Prodrugs. Molecular Pharmaceutics, 2019, 16, 4292-4301.	4.6	13
51	Investigation of Novel Primary and Secondary Pharmacophores and 3-Substitution in the Linking Chain of a Series of Highly Selective and Bitopic Dopamine D ₃ Receptor Antagonists and Partial Agonists. Journal of Medicinal Chemistry, 2019, 62, 9061-9077.	6.4	30
52	Unbiased Metabolic Profiling Predicts Sensitivity of High MYC-Expressing Atypical Teratoid/Rhabdoid Tumors to Glutamine Inhibition with 6-Diazo-5-Oxo-L-Norleucine. Clinical Cancer Research, 2019, 25, 5925-5936.	7.0	22
53	The Significance of Chirality in Drug Design and Synthesis of Bitopic Ligands as D ₃ Receptor (D ₃ R) Selective Agonists. Journal of Medicinal Chemistry, 2019, 62, 6287-6314.	6.4	26
54	Upregulation of the Glutaminase II Pathway Contributes to Glutamate Production upon Glutaminase 1 Inhibition in Pancreatic Cancer. Proteomics, 2019, 19, e1800451.	2.2	36

BARBARA STAUCH SLUSHER

#	Article	IF	CITATIONS
55	Tumor-Targeted Delivery of 6-Diazo-5-oxo- <scp>l</scp> -norleucine (DON) Using Substituted Acetylated Lysine Prodrugs. Journal of Medicinal Chemistry, 2019, 62, 3524-3538.	6.4	36
56	The NAAG'ing Concerns of Modeling Human Alzheimer's Disease in Mice. Journal of Alzheimer's Disease, 2019, 68, 939-945.	2.6	5
57	Neutral sphingomyelinase 2 inhibitors based on the 4-(1H-imidazol-2-yl)-2,6-dialkoxyphenol scaffold. European Journal of Medicinal Chemistry, 2019, 170, 276-289.	5.5	11
58	Intranasal insulin therapy reverses hippocampal dendritic injury and cognitive impairment in a model of HIV-associated neurocognitive disorders in EcoHIV-infected mice. Aids, 2019, 33, 973-984.	2.2	37
59	Inhibition of mTORC1 in pediatric low-grade glioma depletes glutathione and therapeutically synergizes with carboplatin. Neuro-Oncology, 2019, 21, 252-263.	1.2	21
60	Dopamine D3R antagonist VK4-116 attenuates oxycodone self-administration and reinstatement without compromising its antinociceptive effects. Neuropsychopharmacology, 2019, 44, 1415-1424.	5.4	61
61	Structural and computational basis for potent inhibition of glutamate carboxypeptidase II by carbamate-based inhibitors. Bioorganic and Medicinal Chemistry, 2019, 27, 255-264.	3.0	21
62	N-Substituted Prodrugs of Mebendazole Provide Improved Aqueous Solubility and Oral Bioavailability in Mice and Dogs. Journal of Medicinal Chemistry, 2018, 61, 3918-3929.	6.4	33
63	Glutamine metabolism via glutaminase 1 in autosomal-dominant polycystic kidney disease. Nephrology Dialysis Transplantation, 2018, 33, 1343-1353.	0.7	21
64	Pharmacokinetics of Intranasal versus Subcutaneous Insulin in the Mouse. ACS Chemical Neuroscience, 2018, 9, 809-816.	3.5	28
65	The Low-Affinity Binding of Second Generation Radiotracers Targeting TSPO is Associated with a Unique Allosteric Binding Site. Journal of NeuroImmune Pharmacology, 2018, 13, 1-5.	4.1	14
66	Atypical dopamine transporter inhibitors attenuate compulsive-like methamphetamine self-administration in rats. Neuropharmacology, 2018, 131, 96-103.	4.1	21
67	Peripheral Neuropathy Induced by Microtubule-Targeted Chemotherapies: Insights into Acute Injury and Long-term Recovery. Cancer Research, 2018, 78, 817-829.	0.9	54
68	DPTIP, a newly identified potent brain penetrant neutral sphingomyelinase 2 inhibitor, regulates astrocyte-peripheral immune communication following brain inflammation. Scientific Reports, 2018, 8, 17715.	3.3	41
69	MRI demonstrates glutamine antagonist-mediated reversal of cerebral malaria pathology in mice. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E12024-E12033.	7.1	26
70	Ghrelin agonist HM01 attenuates chemotherapy-induced neurotoxicity in rodent models. European Journal of Pharmacology, 2018, 840, 89-103.	3.5	15
71	Structural basis for potent inhibition of d-amino acid oxidase by thiophene carboxylic acids. European Journal of Medicinal Chemistry, 2018, 159, 23-34.	5.5	6
72	We're Not "DON―Yet: Optimal Dosing and Prodrug Delivery of <i>6-Diazo-5-oxo-L-norleucine</i> . Molecular Cancer Therapeutics, 2018, 17, 1824-1832.	4.1	148

#	Article	IF	CITATIONS
73	NaV1.1 inhibition can reduce visceral hypersensitivity. JCI Insight, 2018, 3, .	5.0	34
74	Local enema treatment to inhibit FOLH1 /GCPII as a novel therapy for inflammatory bowel disease. Journal of Controlled Release, 2017, 263, 132-138.	9.9	20
75	Development of a primary microglia screening assay and its use to characterize inhibition of system xc- by erastin and its analogs. Biochemistry and Biophysics Reports, 2017, 9, 266-272.	1.3	11
76	Role of Academic Drug Discovery in the Quest for New CNS Therapeutics. ACS Chemical Neuroscience, 2017, 8, 429-431.	3.5	19
77	Microtubule-Targeting Agents Eribulin and Paclitaxel Differentially Affect Neuronal Cell Bodies in Chemotherapy-Induced Peripheral Neuropathy. Neurotoxicity Research, 2017, 32, 151-162.	2.7	20
78	Glutamine antagonist-mediated immune suppression decreases pathology but delays virus clearance in mice during nonfatal alphavirus encephalomyelitis. Virology, 2017, 508, 134-149.	2.4	18
79	The Psychiatric Impact of HIV. ACS Chemical Neuroscience, 2017, 8, 1432-1434.	3.5	34
80	Valley of death: A proposal to build a "translational bridge―for the next generation. Neuroscience Research, 2017, 115, 1-4.	1.9	33
81	Discovery of a <i>para</i> -Acetoxy-benzyl Ester Prodrug of a Hydroxamate-Based Glutamate Carboxypeptidase II Inhibitor as Oral Therapy for Neuropathic Pain. Journal of Medicinal Chemistry, 2017, 60, 7799-7809.	6.4	21
82	<i>N</i> -(Pivaloyloxy)alkoxy-carbonyl Prodrugs of the Glutamine Antagonist 6-Diazo-5-oxo- <scp>l</scp> -norleucine (DON) as a Potential Treatment for HIV Associated Neurocognitive Disorders. Journal of Medicinal Chemistry, 2017, 60, 7186-7198.	6.4	56
83	Enhanced Brain Delivery of 2-(Phosphonomethyl)pentanedioic Acid Following Intranasal Administration of Its Î ³ -Substituted Ester Prodrugs. Molecular Pharmaceutics, 2017, 14, 3248-3257.	4.6	8
84	Structure–Activity Relationship Studies on a Series of 3α-[Bis(4-fluorophenyl)methoxy]tropanes and 3α-[Bis(4-fluorophenyl)methylamino]tropanes As Novel Atypical Dopamine Transporter (DAT) Inhibitors for the Treatment of Cocaine Use Disorders. Journal of Medicinal Chemistry, 2017, 60, 10172-10187.	6.4	15
85	Prostate-specific membrane antigen (PSMA)-mediated laminin proteolysis generates a pro-angiogenic peptide. Angiogenesis, 2016, 19, 487-500.	7.2	51
86	Paclitaxel causes degeneration of both central and peripheral axon branches of dorsal root ganglia in mice. BMC Neuroscience, 2016, 17, 47.	1.9	23
87	Unprecedented Binding Mode of Hydroxamate-Based Inhibitors of Glutamate Carboxypeptidase II: Structural Characterization and Biological Activity. Journal of Medicinal Chemistry, 2016, 59, 4539-4550.	6.4	18
88	Still NAAG'ing After All These Years. Advances in Pharmacology, 2016, 76, 215-255.	2.0	43
89	Highly Selective Dopamine D ₃ Receptor (D ₃ R) Antagonists and Partial Agonists Based on Eticlopride and the D ₃ R Crystal Structure: New Leads for Opioid Dependence Treatment. Journal of Medicinal Chemistry, 2016, 59, 7634-7650.	6.4	73
90	Structural Basis for Induction of Peripheral Neuropathy by Microtubule-Targeting Cancer Drugs. Cancer Research, 2016, 76, 5115-5123.	0.9	36

#	Article	IF	CITATIONS
91	Propertyâ€Guided Synthesis of Azaâ€Tricyclic Indolines: Development of Gold Catalysis En Route. Advanced Synthesis and Catalysis, 2016, 358, 1482-1490.	4.3	17
92	Discovery of 6-Diazo-5-oxo- <scp>l</scp> -norleucine (DON) Prodrugs with Enhanced CSF Delivery in Monkeys: A Potential Treatment for Glioblastoma. Journal of Medicinal Chemistry, 2016, 59, 8621-8633.	6.4	98
93	Protective Effects of Clutamine Antagonist 6-Diazo-5-Oxo- <scp>l</scp> -Norleucine in Mice with Alphavirus Encephalomyelitis. Journal of Virology, 2016, 90, 9251-9262.	3.4	31
94	Combination therapy with BPTES nanoparticles and metformin targets the metabolic heterogeneity of pancreatic cancer. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E5328-36.	7.1	180
95	Neuromuscular NMDA Receptors Modulate Developmental Synapse Elimination. Journal of Neuroscience, 2016, 36, 8783-8789.	3.6	39
96	Novel and High Affinity 2-[(Diphenylmethyl)sulfinyl]acetamide (Modafinil) Analogues as Atypical Dopamine Transporter Inhibitors. Journal of Medicinal Chemistry, 2016, 59, 10676-10691.	6.4	58
97	Sustained Accumulation of Microtubule-Binding Chemotherapy Drugs in the Peripheral Nervous System: Correlations with Time Course and Neurotoxic Severity. Cancer Research, 2016, 76, 3332-3339.	0.9	36
98	Oral administration of D-alanine in monkeys robustly increases plasma and cerebrospinal fluid levels but experimental D-amino acid oxidase inhibitors had minimal effect. Journal of Psychopharmacology, 2016, 30, 887-895.	4.0	5
99	Maternal inflammation leads to impaired glutamate homeostasis and up-regulation of glutamate carboxypeptidase II in activated microglia in the fetal/newborn rabbit brain. Neurobiology of Disease, 2016, 94, 116-128.	4.4	59
100	Allosteric Glutaminase Inhibitors Based on a 1,4-Di(5-amino-1,3,4-thiadiazol-2-yl)butane Scaffold. ACS Medicinal Chemistry Letters, 2016, 7, 520-524.	2.8	50
101	Dose-dependent inhibition of GCPII to prevent and treat cognitive impairment in the EAE model of multiple sclerosis. Brain Research, 2016, 1635, 105-112.	2.2	19
102	Effects of Paclitaxel and Eribulin in Mouse Sciatic Nerve: A Microtubule-Based Rationale for the Differential Induction of Chemotherapy-Induced Peripheral Neuropathy. Neurotoxicity Research, 2016, 29, 299-313.	2.7	27
103	d-Amino acid oxidase inhibitors based on the 5-hydroxy-1,2,4-triazin-6(1H)-one scaffold. Bioorganic and Medicinal Chemistry Letters, 2016, 26, 2088-2091.	2.2	12
104	Discovery of Orally Available Prodrugs of the Glutamate Carboxypeptidase II (GCPII) Inhibitor 2-Phosphonomethylpentanedioic Acid (2-PMPA). Journal of Medicinal Chemistry, 2016, 59, 2810-2819.	6.4	25
105	D-Amino-Acid Oxidase Inhibition Increases D-Serine Plasma Levels in Mouse But not in Monkey or Dog. Neuropsychopharmacology, 2016, 41, 1610-1619.	5.4	19
106	FOLH1/GCPII is elevated in IBD patients, and its inhibition ameliorates murine IBD abnormalities. JCI Insight, 2016, 1, .	5.0	35
107	High-Throughput Assay Development for Cystine-Glutamate Antiporter (xc-) Highlights Faster Cystine Uptake than Glutamate Release in Glioma Cells. PLoS ONE, 2015, 10, e0127785.	2.5	14
108	Selective CNS Uptake of the GCP-II Inhibitor 2-PMPA following Intranasal Administration. PLoS ONE, 2015, 10, e0131861.	2.5	25

#	Article	IF	CITATIONS
109	Gastrointestinal delivery of propofol from fospropofol: its bioavailability and activity in rodents and human volunteers. Journal of Translational Medicine, 2015, 13, 170.	4.4	11
110	Mechanisms and latest clinical studies of new NK1 receptor antagonists for chemotherapy-induced nausea and vomiting: Rolapitant and NEPA (netupitant/palonosetron). Cancer Treatment Reviews, 2015, 41, 904-913.	7.7	27
111	Neurological sequelae induced by alphavirus infection of the CNS are attenuated by treatment with the glutamine antagonist 6-diazo-5-oxo-l-norleucine. Journal of NeuroVirology, 2015, 21, 159-173.	2.1	25
112	Bioanalysis of 6-diazo-5-oxo-l-norleucine in plasma and brain by ultra-performance liquid chromatography mass spectrometry. Analytical Biochemistry, 2015, 474, 28-34.	2.4	14
113	Using click chemistry toward novel 1,2,3-triazole-linked dopamine D3 receptor ligands. Bioorganic and Medicinal Chemistry, 2015, 23, 4000-4012.	3.0	29
114	High Affinity Dopamine D ₃ Receptor (D ₃ R)-Selective Antagonists Attenuate Heroin Self-Administration in Wild-Type but not D ₃ R Knockout Mice. Journal of Medicinal Chemistry, 2015, 58, 6195-6213.	6.4	45
115	Tackling reproducibility in academic preclinical drug discovery. Nature Reviews Drug Discovery, 2015, 14, 733-734.	46.4	62
116	Preventing Allograft Rejection by Targeting Immune Metabolism. Cell Reports, 2015, 13, 760-770.	6.4	156
117	Incorporation of metabolically stable ketones into a small molecule probe to increase potency and water solubility. Bioorganic and Medicinal Chemistry Letters, 2015, 25, 4787-4792.	2.2	93
118	6-Hydroxy-1,2,4-triazine-3,5(2 <i>H</i> ,4 <i>H</i>)-dione Derivatives as Novel <scp>d</scp> -Amino Acid Oxidase Inhibitors. Journal of Medicinal Chemistry, 2015, 58, 7258-7272.	6.4	29
119	Targeted inhibition of tumor-specific glutaminase diminishes cell-autonomous tumorigenesis. Journal of Clinical Investigation, 2015, 125, 2293-2306.	8.2	319
120	Cambinol, a Novel Inhibitor of Neutral Sphingomyelinase 2 Shows Neuroprotective Properties. PLoS ONE, 2015, 10, e0124481.	2.5	77
121	Clutamate Carboxypeptidase II Inhibition Behaviorally and Physiologically Improves Pyridoxine-Induced Neuropathy in Rats. PLoS ONE, 2014, 9, e102936.	2.5	13
122	Pharmacological inhibition of cystine–glutamate exchange induces endoplasmic reticulum stress and ferroptosis. ELife, 2014, 3, e02523.	6.0	1,296
123	Inhibition of Microglia Activation as a Phenotypic Assay in Early Drug Discovery. Journal of Biomolecular Screening, 2014, 19, 17-31.	2.6	43
124	Regional brain distribution of translocator protein using [11C]DPA-713 PET in individuals infected with HIV. Journal of NeuroVirology, 2014, 20, 219-232.	2.1	78
125	Structure–Metabolism Relationships in the Glucuronidation of <scp>d</scp> -Amino Acid Oxidase Inhibitors. ACS Medicinal Chemistry Letters, 2014, 5, 1251-1253.	2.8	5
126	Peptidomimetics of Arg-Phe-NH2 as small molecule agonists of Mas-related gene C (MrgC) receptors. Bioorganic and Medicinal Chemistry, 2014, 22, 5831-5837.	3.0	5

#	Article	IF	CITATIONS
127	δ-Thiolactones as Prodrugs of Thiol-Based Glutamate Carboxypeptidase II (GCPII) Inhibitors. Journal of Medicinal Chemistry, 2014, 57, 243-247.	6.4	26
128	Netupitant and palonosetron trigger NK1 receptor internalization in NG108-15 cells. Experimental Brain Research, 2014, 232, 2637-2644.	1.5	35
129	Small molecule glutaminase inhibitors block glutamate release from stimulated microglia. Biochemical and Biophysical Research Communications, 2014, 443, 32-36.	2.1	54
130	Bioanalytical method for evaluating the pharmacokinetics of the GCP-II inhibitor 2-phosphonomethyl pentanedioic acid (2-PMPA). Journal of Pharmaceutical and Biomedical Analysis, 2014, 88, 162-169.	2.8	14
131	Molecular mechanisms of 5-HT3 and NK1 receptor antagonists in prevention of emesis. European Journal of Pharmacology, 2014, 722, 26-37.	3.5	123
132	Neuropathy-Inducing Effects of Eribulin Mesylate Versus Paclitaxel in Mice with Preexisting Neuropathy. Neurotoxicity Research, 2013, 24, 338-344.	2.7	26
133	Targeting the Glutamatergic System for the Treatment of HIV-Associated Neurocognitive Disorders. Journal of NeuroImmune Pharmacology, 2013, 8, 594-607.	4.1	75
134	Glutamate Carboxypeptidase II. , 2013, , 1620-1627.		6
135	Kinetic characterization of ebselen, chelerythrine and apomorphine as glutaminase inhibitors. Biochemical and Biophysical Research Communications, 2013, 438, 243-248.	2.1	59
136	Bringing together the academic drug discovery community. Nature Reviews Drug Discovery, 2013, 12, 811-812.	46.4	56
137	Synthesis of kojic acid derivatives as secondary binding site probes of d-amino acid oxidase. Bioorganic and Medicinal Chemistry Letters, 2013, 23, 3910-3913.	2.2	20
138	Glutamate carboxypeptidase II is not an amyloid peptideâ€degrading enzyme. FASEB Journal, 2013, 27, 2620-2625.	0.5	4
139	Pharmacokinetics and Pharmacodynamics of the Glutamate Carboxypeptidase II Inhibitor 2-MPPA Show Prolonged Alleviation of Neuropathic Pain through an Indirect Mechanism. Journal of Pharmacology and Experimental Therapeutics, 2013, 346, 406-413.	2.5	22
140	Biodistribution, Tumor Detection, and Radiation Dosimetry of ¹⁸ F-DCFBC, a Low-Molecular-Weight Inhibitor of Prostate-Specific Membrane Antigen, in Patients with Metastatic Prostate Cancer. Journal of Nuclear Medicine, 2012, 53, 1883-1891.	5.0	264
141	The Orally Active Glutamate Carboxypeptidase II Inhibitor E2072 Exhibits Sustained Nerve Exposure and Attenuates Peripheral Neuropathy. Journal of Pharmacology and Experimental Therapeutics, 2012, 343, 746-754.	2.5	17
142	Inhibition of Glutamate Carboxypeptidase II (GCPII) activity as a treatment for cognitive impairment in multiple sclerosis. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 20101-20106.	7.1	57
143	Reversible Disulfide Formation of the Glutamate Carboxypeptidase II Inhibitor E2072 Results in Prolonged Systemic Exposures In Vivo. Drug Metabolism and Disposition, 2012, 40, 2315-2323.	3.3	7
144	Pharmacokinetics of Oral d-Serine in d-Amino Acid Oxidase Knockout Mice. Drug Metabolism and Disposition, 2012, 40, 2067-2073.	3.3	42

#	Article	IF	CITATIONS
145	Design, Synthesis, and Pharmacological Evaluation of Bis-2-(5-phenylacetamido-1,2,4-thiadiazol-2-yl)ethyl Sulfide 3 (BPTES) Analogs as Glutaminase Inhibitors. Journal of Medicinal Chemistry, 2012, 55, 10551-10563.	6.4	163
146	Synthesis and Biological Evaluation of Low Molecular Weight Fluorescent Imaging Agents for the Prostate-Specific Membrane Antigen. Bioconjugate Chemistry, 2012, 23, 2377-2385.	3.6	84
147	Glucose-Independent Glutamine Metabolism via TCA Cycling for Proliferation and Survival in B Cells. Cell Metabolism, 2012, 15, 110-121.	16.2	923
148	Design, Synthesis, and Pharmacological Evaluation of Glutamate Carboxypeptidase II (GCPII) Inhibitors Based on Thioalkylbenzoic Acid Scaffolds. Journal of Medicinal Chemistry, 2012, 55, 5922-5932.	6.4	26
149	Synthesis and SAR of 1-Hydroxy-1 <i>H</i> -benzo[<i>d</i>]imidazol-2(3 <i>H</i>)-ones as Inhibitors of <scp>d</scp> -Amino Acid Oxidase. ACS Medicinal Chemistry Letters, 2012, 3, 839-843.	2.8	27
150	Pharmacological mechanisms of 5-HT3 and tachykinin NK1 receptor antagonism to prevent chemotherapy-induced nausea and vomiting. European Journal of Pharmacology, 2012, 684, 1-7.	3.5	112
151	Inhibition of substance P-mediated responses in NG108-15 cells by netupitant and palonosetron exhibit synergistic effects. European Journal of Pharmacology, 2012, 689, 25-30. Inhibition of <mml:math <="" altimg="si1.gif" td="" xmlns:mml="http://www.w3.org/1998/Math/MathML"><td>3.5</td><td>72</td></mml:math>	3.5	72
	overflow="scroll"> <mml:mrow><mml:mmultiscripts><mml:mrow><mml:mi>x</mml:mi></mml:mrow><mml:mrov< td=""><td>v><mml:r< td=""><td>ntext>c</td></mml:r<></td></mml:mrov<></mml:mmultiscripts></mml:mrow>	v> <mml:r< td=""><td>ntext>c</td></mml:r<>	ntext>c
152	/> <mml:mrow><mml:mo>-</mml:mo></mml:mrow> transporter-mediated cystine uptake by sulfasalazine analogs. Bioorganic and Medicinal Chemistry	2.2	34
153	Letters, 2011, 21, 6184-6187. Orally active glutamate carboxypeptidase II inhibitor 2-MPPA attenuates dizocilpine-induced prepulse inhibition deficits in mice. Brain Research, 2011, 1371, 82-86.	2.2	23
154	Comparison of Neuropathy-Inducing Effects of Eribulin Mesylate, Paclitaxel, and Ixabepilone in Mice. Cancer Research, 2011, 71, 3952-3962.	0.9	85
155	Reduced BACE1 Activity Enhances Clearance of Myelin Debris and Regeneration of Axons in the Injured Peripheral Nervous System. Journal of Neuroscience, 2011, 31, 5744-5754.	3.6	76
156	Glutamate Carboxypeptidase Inhibition Reduces the Severity of Chemotherapy-Induced Peripheral Neurotoxicity in Rat. Neurotoxicity Research, 2010, 17, 380-391.	2.7	59
157	Palonosetron triggers 5-HT3 receptor internalization and causes prolonged inhibition of receptor function. European Journal of Pharmacology, 2010, 626, 193-199.	3.5	172
158	Oral administration of the NAALADase inhibitor GPI-5693 attenuates cocaine-induced reinstatement of drug-seeking behavior in rats. European Journal of Pharmacology, 2010, 627, 156-161.	3.5	24
159	Consecutive low doses of cyclophosphamide preferentially target Tregs and potentiate T cell responses induced by DNA PLG microparticle immunization. Cellular Immunology, 2010, 262, 150-161.	3.0	33
160	Bioanalysis of N-acetyl-aspartyl-glutamate as a marker of glutamate carboxypeptidase II inhibition. Analytical Biochemistry, 2010, 404, 94-96.	2.4	6
161	The discovery and structure–activity relationships of indole-based inhibitors of glutamate carboxypeptidase II. Bioorganic and Medicinal Chemistry Letters, 2010, 20, 7222-7225.	2.2	13
162	Inhibition of NAALADase by 2â€PMPA attenuates cocaineâ€induced relapse in rats: a NAAGâ€mGluR2/3â€mediate mechanism. Journal of Neurochemistry, 2010, 112, 564-576.	ed 3.9	51

#	Article	IF	CITATIONS
163	The Antiemetic 5-HT ₃ Receptor Antagonist Palonosetron Inhibits Substance P-Mediated Responses In Vitro and In Vivo. Journal of Pharmacology and Experimental Therapeutics, 2010, 335, 362-368.	2.5	123
164	Inhibition of Glutaminase Preferentially Slows Growth of Glioma Cells with Mutant IDH1. Cancer Research, 2010, 70, 8981-8987.	0.9	439
165	<i>In vitro</i> and <i>In vivo</i> Radiosensitization of Glioblastoma Cells by the Poly (ADP-Ribose) Polymerase Inhibitor E7016. Clinical Cancer Research, 2009, 15, 607-612.	7.0	156
166	GCP II inhibition rescues neurons from gp120IIIB-induced neurotoxicity. Journal of NeuroVirology, 2009, 15, 449-457.	2.1	15
167	Structural Basis of Interactions between Human Glutamate Carboxypeptidase II and Its Substrate Analogs. Journal of Molecular Biology, 2008, 376, 1438-1450.	4.2	79
168	Structural Insight into the Pharmacophore Pocket of Human Glutamate Carboxypeptidase II. Journal of Medicinal Chemistry, 2007, 50, 3267-3273.	6.4	71
169	Progress in the discovery and development of glutamate carboxypeptidase II inhibitors. Drug Discovery Today, 2007, 12, 767-776.	6.4	102
170	Structural Optimization of Thiol-Based Inhibitors of Glutamate Carboxypeptidase II by Modification of the Plâ€~ Side Chain. Journal of Medicinal Chemistry, 2006, 49, 2876-2885.	6.4	42
171	New Approaches to Chemotherapy-Induced Nausea and Vomiting. Cancer Journal (Sudbury, Mass), 2006, 12, 341-347.	2.0	42
172	Structure of glutamate carboxypeptidase II, a drug target in neuronal damage and prostate cancer. EMBO Journal, 2006, 25, 1375-1384.	7.8	241
173	Mice lacking glutamate carboxypeptidase II are protected from peripheral neuropathy and ischemic brain injury. Journal of Neurochemistry, 2005, 95, 314-323.	3.9	62
174	Inhibition of glutamate carboxypeptidase II (NAALADase) protects against dynorphin A-induced ischemic spinal cord injury in rats. European Journal of Pharmacology, 2005, 508, 115-122.	3.5	21
175	DPP IV inhibitor blocks mescaline-induced scratching and amphetamine-induced hyperactivity in mice. Brain Research, 2005, 1048, 177-184.	2.2	26
176	2-MPPA, a selective glutamate carboxypeptidase II inhibitor, attenuates morphine tolerance but not dependence in C57/Bl mice. Psychopharmacology, 2005, 183, 275-284.	3.1	14
177	Enantiospecificity of Glutamate Carboxypeptidase II Inhibition. Journal of Medicinal Chemistry, 2005, 48, 2319-2324.	6.4	25
178	GCP II (NAALADase) Inhibition Suppresses Mossy Fiber-CA3 Synaptic Neurotransmission by a Presynaptic Mechanism. Journal of Neurophysiology, 2004, 91, 182-193.	1.8	75
179	Amino acids at the N- and C-termini of human glutamate carboxypeptidase II are required for enzymatic activity and proper folding. FEBS Journal, 2004, 271, 2782-2790.	0.2	29
180	Identification of the N-glycosylation sites on glutamate carboxypeptidase II necessary for proteolytic activity. Protein Science, 2004, 13, 1627-1635.	7.6	93

#	Article	IF	CITATIONS
181	Effects of GCP-II inhibition on responses of dorsal horn neurones after inflammation and neuropathy: an electrophysiological study in the rat. Neuropeptides, 2003, 37, 298-306.	2.2	49
182	Synthesis and biological evaluation of hydroxamate-Based inhibitors of glutamate carboxypeptidase II. Bioorganic and Medicinal Chemistry Letters, 2003, 13, 2097-2100.	2.2	46
183	Effect of middle cerebral artery occlusion on mRNA expression for the sodium-coupled vitamin C transporter SVCT2 in rat brain. Journal of Neurochemistry, 2003, 86, 896-906.	3.9	63
184	Synthesis and Biological Evaluation of Thiol-Based Inhibitors of Glutamate Carboxypeptidase II: Discovery of an Orally Active GCP II Inhibitor. Journal of Medicinal Chemistry, 2003, 46, 1989-1996.	6.4	100
185	Mouse brain serine racemase catalyzes specific elimination ofL-serine to pyruvate. FEBS Letters, 2003, 535, 44-48.	2.8	78
186	Glutamate carboxypeptidase II inhibition protects motor neurons from death in familial amyotrophic lateral sclerosis models. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 9554-9559.	7.1	115
187	Morphine Tolerance and Reward but not Expression of Morphine Dependence are Inhibited by the Selective Glutamate Carboxypeptidase II (GCP II, NAALADase) Inhibitor, 2-PMPA. Neuropsychopharmacology, 2003, 28, 457-467.	5.4	41
188	Effect of 2-(Phosphono-methyl)-pentanedioic Acid on Allodynia and Afferent Ectopic Discharges in a Rat Model of Neuropathic Pain. Journal of Pharmacology and Experimental Therapeutics, 2002, 300, 662-667.	2.5	52
189	NAALADase (GCP II) inhibition prevents cocaine-kindled seizures. Neuropharmacology, 2002, 43, 348-356.	4.1	35
190	Substrate specificity, inhibition and enzymological analysis of recombinant human glutamate carboxypeptidase II. Journal of Neurochemistry, 2002, 80, 477-487.	3.9	113
191	Phosphonate and phosphinate analogues of N-Acylated γ-glutamylglutamate. Bioorganic and Medicinal Chemistry Letters, 2002, 12, 2189-2192.	2.2	23
192	Kinetics and inhibition of glutamate carboxypeptidase II using a microplate assay. Analytical Biochemistry, 2002, 310, 50-54.	2.4	60
193	Design and Pharmacological Activity of Phosphinic Acid Based NAALADase Inhibitors. Journal of Medicinal Chemistry, 2001, 44, 4170-4175.	6.4	90
194	Expression and acquisition of the conditioned place preference response to cocaine in rats is blocked by selective inhibitors of the enzyme N-acetylated-?-linked-acidic dipeptidase (NAALADASE). Synapse, 2001, 41, 22-28.	1.2	55
195	Neuroprotection mediated by glutamate carboxypeptidase II (NAALADase) inhibition requires TGF-β. European Journal of Pharmacology, 2001, 430, 33-40.	3.5	41
196	Prostate-specific membrane antigen (PSMA) enzyme activity is elevated in prostate cancer cells. Prostate, 2000, 45, 350-354.	2.3	112
197	Modulation of behavioral sensitization to cocaine by NAALADase inhibition. Synapse, 2000, 38, 161-166.	1.2	33
198	Neuroprotection produced by the NAALADase inhibitor 2-PMPA in rat cerebellar neurons. European Journal of Pharmacology, 2000, 402, 31-37.	3.5	41

BARBARA STAUCH SLUSHER

#	Article	IF	CITATIONS
199	N-acetylated-α-linked-acidic dipeptidase inhibitor has a neuroprotective effect on mouse retinal ganglion cells after pressure-induced ischemia. Neuroscience Letters, 2000, 292, 134-136.	2.1	34
200	Selective inhibition of NAALADase, which converts NAAG to glutamate, reduces ischemic brain injury. Nature Medicine, 1999, 5, 1396-1402.	30.7	281
201	Toxicity induced by a polyglutamated folate analog is attenuated by NAALADase inhibition. Brain Research, 1999, 843, 48-52.	2.2	6
202	Characterization of the enzymatic activity of PSM: Comparison with brain NAALADase. , 1999, 39, 28-35.		82
203	Use of identical assay conditions for cocaine analog binding and dopamine uptake to identify potential cocaine antagonists. Drug and Alcohol Dependence, 1997, 48, 43-50.	3.2	33
204	Design, Synthesis, and Biological Activity of a Potent Inhibitor of the Neuropeptidase N-Acetylated α-Linked Acidic Dipeptidase. Journal of Medicinal Chemistry, 1996, 39, 619-622.	6.4	230
205	A shot in the arm for cocaine addiction. Nature Medicine, 1996, 2, 26-27.	30.7	2
206	Abnormal acidic amino acids and N-acetylaspartylglutamate in hereditary canine motoneuron disease. Brain Research, 1993, 629, 305-309.	2.2	14
207	Immunocytochemical distribution of n-acetylaspartylglutamate in the rat forebrain and glutamatergic pathways. Journal of Chemical Neuroanatomy, 1993, 6, 277-292.	2.1	32
208	Genetically epilepsy-prone rats have increased brain regional activity of an enzyme which liberates glutamate from N-acetyl-aspartyl-glutamate. Brain Research, 1992, 593, 140-143.	2.2	37
209	Immunocytochemical localization of the N-acetyl-aspartyl-glutamate (NAAG) hydrolyzing enzyme N-acetylated ?-linked acidic dipeptidase (NAALADase). Journal of Comparative Neurology, 1992, 315, 217-229.	1.6	91
210	Phosphonates and Phosphonate Prodrugs in Medicinal Chemistry: Past Successes and Future Prospects. Frontiers in Chemistry, 0, 10, .	3.6	27