Xufan Li

List of Publications by Citations

Source: https://exaly.com/author-pdf/2305317/xufan-li-publications-by-citations.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

55	3,267 citations	29	55
papers		h-index	g-index
55	3,691 ext. citations	9.7	4.83
ext. papers		avg, IF	L-index

#	Paper	IF	Citations
55	New yellow Ba0.93Eu0.07Al2O4 phosphor for warm-white light-emitting diodes through single-emitting-center conversion. <i>Light: Science and Applications</i> , 2013 , 2, e50-e50	16.7	334
54	2D materials advances: from large scale synthesis and controlled heterostructures to improved characterization techniques, defects and applications. <i>2D Materials</i> , 2016 , 3, 042001	5.9	297
53	Artificial inorganic leafs for efficient photochemical hydrogen production inspired by natural photosynthesis. <i>Advanced Materials</i> , 2010 , 22, 951-6	24	216
52	Controlled vapor phase growth of single crystalline, two-dimensional GaSe crystals with high photoresponse. <i>Scientific Reports</i> , 2014 , 4, 5497	4.9	194
51	Two-dimensional GaSe/MoSe2 misfit bilayer heterojunctions by van der Waals epitaxy. <i>Science Advances</i> , 2016 , 2, e1501882	14.3	190
50	Enhanced Light-Harvesting and Photocatalytic Properties in Morph-TiO2 from Green-Leaf Biotemplates. <i>Advanced Functional Materials</i> , 2009 , 19, 45-56	15.6	184
49	Deep Learning of Atomically Resolved Scanning Transmission Electron Microscopy Images: Chemical Identification and Tracking Local Transformations. <i>ACS Nano</i> , 2017 , 11, 12742-12752	16.7	183
48	A roadmap for electronic grade 2D materials. 2D Materials, 2019, 6, 022001	5.9	133
47	Low-Frequency Raman Fingerprints of Two-Dimensional Metal Dichalcogenide Layer Stacking Configurations. <i>ACS Nano</i> , 2015 , 9, 6333-42	16.7	121
46	Thickness-dependent charge transport in few-layer MoSIField-effect transistors. <i>Nanotechnology</i> , 2016 , 27, 165203	3.4	96
45	Twisted MoSelBilayers with Variable Local Stacking and Interlayer Coupling Revealed by Low-Frequency Raman Spectroscopy. <i>ACS Nano</i> , 2016 , 10, 2736-44	16.7	95
44	In situ atomistic insight into the growth mechanisms of single layer 2D transition metal carbides. <i>Nature Communications</i> , 2018 , 9, 2266	17.4	89
43	Van der Waals Epitaxial Growth of Two-Dimensional Single-Crystalline GaSe Domains on Graphene. <i>ACS Nano</i> , 2015 , 9, 8078-88	16.7	87
42	Near infrared long-persistent phosphorescence in SrAl2O4:Eu2+,Dy3+,Er3+ phosphors based on persistent energy transfer. <i>Applied Physics Letters</i> , 2009 , 95, 231110	3.4	70
41	Isoelectronic Tungsten Doping in Monolayer MoSe for Carrier Type Modulation. <i>Advanced Materials</i> , 2016 , 28, 8240-8247	24	69
40	Suppression of Defects and Deep Levels Using Isoelectronic Tungsten Substitution in Monolayer MoSe2. <i>Advanced Functional Materials</i> , 2017 , 27, 1603850	15.6	62
39	In situ edge engineering in two-dimensional transition metal dichalcogenides. <i>Nature Communications</i> , 2018 , 9, 2051	17.4	60

(2008-2010)

38	Red, Green, and Blue Luminescence from ZnGa2O4 Nanowire Arrays. <i>Journal of Physical Chemistry Letters</i> , 2010 , 1, 354-357	6.4	58	
37	Nanoforging Single Layer MoSe2 Through Defect Engineering with Focused Helium Ion Beams. <i>Scientific Reports</i> , 2016 , 6, 30481	4.9	55	
36	Edge-Controlled Growth and Etching of Two-Dimensional GaSe Monolayers. <i>Journal of the American Chemical Society</i> , 2017 , 139, 482-491	16.4	50	
35	Nanostructured Zeolitic Imidazolate Frameworks Derived from Nanosized Zinc Oxide Precursors. <i>Crystal Growth and Design</i> , 2013 , 13, 1002-1005	3.5	47	
34	Synthesis and hierarchical pore structure of biomorphic manganese oxide derived from woods. Journal of the European Ceramic Society, 2006 , 26, 3657-3664	6	44	
33	Biomimetic photocatalyst system derived from the natural prototype in leaves for efficient visible-light-driven catalysis. <i>Journal of Materials Chemistry</i> , 2009 , 19, 2695		41	
32	Revealing the preferred interlayer orientations and stackings of two-dimensional bilayer gallium selenide crystals. <i>Angewandte Chemie - International Edition</i> , 2015 , 54, 2712-7	16.4	37	
31	Bacteria-based controlled assembly of metal chalcogenide hollow nanostructures with enhanced light-harvesting and photocatalytic properties. <i>Nanotechnology</i> , 2009 , 20, 085603	3.4	37	
30	Graphitized hollow carbon spheres and yolk-structured carbon spheres fabricated by metal-catalyst-free chemical vapor deposition. <i>Carbon</i> , 2016 , 101, 57-61	10.4	34	
29	Isotope-Engineering the Thermal Conductivity of Two-Dimensional MoS. ACS Nano, 2019, 13, 2481-248	916.7	32	
28	Bio-Inspired Bottom-Up Assembly of Diatom-Templated Ordered Porous Metal Chalcogenide Meso/Nanostructures. <i>European Journal of Inorganic Chemistry</i> , 2009 , 2009, 211-215	2.3	32	
27	Strain tolerance of two-dimensional crystal growth on curved surfaces. <i>Science Advances</i> , 2019 , 5, eaav	4 02 83	29	
26	Microstructure and Infrared Absorption of Biomorphic Chromium Oxides Templated by Wood Tissues. <i>Journal of the American Ceramic Society</i> , 2006 , 89, 3511-3515	3.8	28	
25	Synthesis of biomorphic Al2O3 based on natural plant templates and assembly of Ag nanoparticles controlled within the nanopores. <i>Microporous and Mesoporous Materials</i> , 2008 , 108, 204-212	5.3	22	
24	Luminescent Zn2GeO4 nanorod arrays and nanowires. <i>Physical Chemistry Chemical Physics</i> , 2013 , 15, 7488-93	3.6	21	
23	Self-assembly of graphene on carbon nanotube surfaces. <i>Scientific Reports</i> , 2013 , 3, 2353	4.9	21	
22	Effect of Metal Doping and Vacancies on the Thermal Conductivity of Monolayer Molybdenum Diselenide. <i>ACS Applied Materials & </i>	9.5	19	
21	A facile way to synthesize biomorphic N-TiO2 incorporated with Au nanoparticles with narrow size distribution and high stability. <i>Microporous and Mesoporous Materials</i> , 2008 , 116, 478-484	5.3	19	

20	Electronically transparent graphene replicas of diatoms: a new technique for the investigation of frustule morphology. <i>Scientific Reports</i> , 2014 , 4, 6117	4.9	17
19	Atomic Insight into Thermolysis-Driven Growth of 2D MoS2. <i>Advanced Functional Materials</i> , 2019 , 29, 1902149	15.6	16
18	Surfactant-Mediated Growth and Patterning of Atomically Thin Transition Metal Dichalcogenides. <i>ACS Nano</i> , 2020 , 14, 6570-6581	16.7	16
17	Luminescent GeO2᠒n2GeO4 hybrid one dimensional nanostructures. <i>CrystEngComm</i> , 2013 , 15, 2904	3.3	16
16	The Critical Role of Electrolyte Gating on the Hydrogen Evolution Performance of Monolayer MoS. <i>Nano Letters</i> , 2019 , 19, 8118-8124	11.5	15
15	Persistent photoconductivity in two-dimensional Mo1\(\text{W}\) WxSe2\(\text{M}\) OSe2 van der Waals heterojunctions. <i>Journal of Materials Research</i> , 2016 , 31, 923-930	2.5	14
14	New localized/delocalized emitting state of Eu2+ in orange-emitting hexagonal EuAl2O4. <i>Scientific Reports</i> , 2014 , 4, 7101	4.9	13
13	Spatial Mapping of Thermal Boundary Conductance at Metal-Molybdenum Diselenide Interfaces. <i>ACS Applied Materials & Diselenide Materials </i>	9.5	11
12	New Ternary Europium Aluminate Luminescent Nanoribbons for Advanced Photonics. <i>Advanced Functional Materials</i> , 2013 , 23, 1998-2006	15.6	11
11	Transformation of 2D group-III selenides to ultra-thin nitrides: enabling epitaxy on amorphous substrates. <i>Nanotechnology</i> , 2018 , 29, 47LT02	3.4	6
10	Revealing the Preferred Interlayer Orientations and Stackings of Two-Dimensional Bilayer Gallium Selenide Crystals. <i>Angewandte Chemie</i> , 2015 , 127, 2750-2755	3.6	5
9	Crystal structures and optical properties of new quaternary strontium europium aluminate luminescent nanoribbons. <i>Journal of Materials Chemistry C</i> , 2015 , 3, 778-788	7.1	5
8	Tip-induced local strain on MoS2/graphite detected by inelastic electron tunneling spectroscopy. <i>Physical Review B</i> , 2018 , 97,	3.3	4
7	Enhancing Hydrogen Evolution Activity of Monolayer Molybdenum Disulfide via a Molecular Proton Mediator. <i>ACS Catalysis</i> , 2021 , 11, 12159-12169	13.1	4
6	Transition Metal Dichalcogenides: Suppression of Defects and Deep Levels Using Isoelectronic Tungsten Substitution in Monolayer MoSe2 (Adv. Funct. Mater. 19/2017). <i>Advanced Functional Materials</i> , 2017 , 27,	15.6	2
5	Assembly of metallic nanoparticles with controllable size in nanopores of biomorphic oxide fibers templated by cotton tissue. <i>Journal of Materials Research</i> , 2007 , 22, 755-762	2.5	2
4	The role of mid-gap phonon modes in thermal transport of transition metal dichalcogenides. Journal of Physics Condensed Matter, 2020 , 32, 025306	1.8	2
3	Nickel particle-enabled width-controlled growth of bilayer molybdenum disulfide nanoribbons. <i>Science Advances</i> , 2021 , 7, eabk1892	14.3	2

LIST OF PUBLICATIONS

- Luminescent Nanoribbons: New Ternary Europium Aluminate Luminescent Nanoribbons for Advanced Photonics (Adv. Funct. Mater. 16/2013). *Advanced Functional Materials*, **2013**, 23, 1978-1978
- Laser Synthesis, Processing, and Spectroscopy of Atomically-Thin Two Dimensional Materials. *Springer Series in Materials Science*, **2018**, 1-37

0.9