
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2304808/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Polycyclic aromatic hydrocarbons and nitropolycyclic aromatic hydrocarbons in urban air particulates and their relationship to emission sources in the Pan–Japan Sea countries. Atmospheric Environment, 2005, 39, 5817-5826.	4.1	267
2	Simultaneous determination of urinary hydroxylated metabolites of naphthalene, fluorene, phenanthrene, fluoranthene and pyrene as multiple biomarkers of exposure to polycyclic aromatic hydrocarbons. Analytical and Bioanalytical Chemistry, 2006, 386, 712-718.	3.7	113
3	Emission and Atmospheric Transport of Particulate PAHs in Northeast Asia. Environmental Science & Technology, 2012, 46, 4941-4949.	10.0	99
4	Long-range transport of polycyclic aromatic hydrocarbons from China to Japan. Atmospheric Environment, 2007, 41, 2710-2718.	4.1	95
5	Estrogenic/Antiestrogenic Activities of Polycyclic Aromatic Hydrocarbons and Their Monohydroxylated Derivatives by Yeast Two-Hybrid Assay. Journal of Health Science, 2007, 53, 562-570.	0.9	87
6	Size distribution of particulate polycyclic aromatic hydrocarbons in fresh combustion smoke and ambient air: A review. Journal of Environmental Sciences, 2020, 88, 370-384.	6.1	84
7	Development of analytical methods for polycyclic aromatic hydrocarbons (PAHs) in airborne particulates: A review. Journal of Environmental Sciences, 2007, 19, 1-11.	6.1	80
8	Comparison of polycyclic aromatic hydrocarbons and nitropolycyclic aromatic hydrocarbons in airborne particulates collected in downtown and suburban Kanazawa, Japan. Atmospheric Environment, 2002, 36, 5535-5541.	4.1	77
9	Long-range transport of polycyclic aromatic hydrocarbons (PAHs) from the eastern Asian continent to Kanazawa, Japan with Asian dust. Atmospheric Environment, 2007, 41, 2580-2593.	4.1	73
10	Characterization and Risk Assessment of Atmospheric PM _{2.5} and PM ₁₀ Particulate-Bound PAHs and NPAHs in Rwanda, Central-East Africa. Environmental Science & Technology, 2018, 52, 12179-12187.	10.0	67
11	Indirect- and direct-acting mutagenicity of diesel, coal and wood burning-derived particulates and contribution of polycyclic aromatic hydrocarbons and nitropolycyclic aromatic hydrocarbons. Mutation Research - Genetic Toxicology and Environmental Mutagenesis, 2010, 695, 29-34.	1.7	63
12	Exposure to Atmospheric Particulate Matter-Bound Polycyclic Aromatic Hydrocarbons and Their Health Effects: A Review. International Journal of Environmental Research and Public Health, 2021, 18, 2177.	2.6	60
13	Identification and Quantification of 1-Nitropyrene Metabolites in Human Urine as a Proposed Biomarker for Exposure to Diesel Exhaust. Chemical Research in Toxicology, 2007, 20, 999-1007.	3.3	59
14	Oxidative Stress More Strongly Induced by ortho- Than para-quinoid Polycyclic Aromatic Hydrocarbons in A549 Cells. Journal of Health Science, 2009, 55, 845-850.	0.9	59
15	Evaluation of Toxic Activities of Polycyclic Aromatic Hydrocarbon Derivatives Using In Vitro Bioassays. Journal of Health Science, 2009, 55, 601-610.	0.9	52
16	An Environmental Quinoid Polycyclic Aromatic Hydrocarbon, Acenaphthenequinone, Modulates Cyclooxygenase-2 Expression through Reactive Oxygen Species Generation and Nuclear Factor Kappa B Activation in A549 Cells. Toxicological Sciences, 2007, 95, 348-355.	3.1	50
17	Atmospheric behaviors of particulate-bound polycyclic aromatic hydrocarbons and nitropolycyclic aromatic hydrocarbons in Beijing, China from 2004 to 2010. Atmospheric Environment, 2017, 152, 354-361.	4.1	50
18	Long term trends in atmospheric concentrations of polycyclic aromatic hydrocarbons and nitropolycyclic aromatic hydrocarbons: A study of Japanese cities from 1997 to 2014. Environmental Pollution, 2018, 233, 474-482.	7.5	48

#	Article	IF	CITATIONS
19	Atmospheric concentrations of polycyclic aromatic hydrocarbons and selected nitrated derivatives in Greater Cairo, Egypt. Atmospheric Environment, 2011, 45, 7352-7359.	4.1	47
20	Comparison of Atmospheric Polycyclic Aromatic Hydrocarbons and Nitropolycyclic Aromatic Hydrocarbons in an Industrialized City (Kitakyushu) and Two Commercial Cities (Sapporo and Tokyo) Journal of Health Science, 2002, 48, 370-375.	0.9	46
21	Particulate Polycyclic Aromatic Hydrocarbons and Their Nitrated Derivatives in Three Cities in Liaoning Province, China. Environmental Forensics, 2007, 8, 165-172.	2.6	46
22	Analysis of Atmospheric Polycyclic Aromatic Hydrocarbons and Nitropolycyclic Aromatic Hydrocarbons in Gas/Particle Phases Separately Collected by a High-volume Air Sampler Equipped with a Column Packed with XAD-4 Resin. Journal of Health Science, 2009, 55, 77-85.	0.9	46
23	Comparison of Polycyclic Aromatic Hydrocarbons and Nitropolycyclic Aromatic Hydrocarbons in Airborne and Automobile Exhaust Particulates. Polycyclic Aromatic Compounds, 2000, 20, 179-190.	2.6	45
24	Mineral dust aerosols promote the formation of toxic nitropolycyclic aromatic compounds. Scientific Reports, 2016, 6, 24427.	3.3	45
25	Characteristics of PM2.5-Bound Polycyclic Aromatic Hydrocarbons and Nitro-Polycyclic Aromatic Hydrocarbons at A Roadside Air Pollution Monitoring Station in Kanazawa, Japan. International Journal of Environmental Research and Public Health, 2020, 17, 805.	2.6	45
26	Comparison of Atmospheric Nitropolycyclic Aromatic Hydrocarbons in Vladivostok, Kanazawa and Toyama Journal of Health Science, 2002, 48, 30-36.	0.9	44
27	Characteristics of air pollutants inside and outside a primary school classroom in Beijing and respiratory health impact on children. Environmental Pollution, 2019, 255, 113147.	7.5	44
28	PM2.5-bound polycyclic aromatic hydrocarbons and nitro-polycyclic aromatic hydrocarbons inside and outside a primary school classroom in Beijing: Concentration, composition, and inhalation cancer risk. Science of the Total Environment, 2020, 705, 135840.	8.0	43
29	A high-performance liquid chromatographic system equipped with on-line reducer, clean-up and concentrator columns for determination of trace levels of nitropolycyclic aromatic hydrocarbons in airborne particulates. Analytica Chimica Acta, 2001, 445, 205-212.	5.4	42
30	Direct-acting mutagenicity of extracts of coal burning-derived particulates and contribution of nitropolycyclic aromatic hydrocarbons. Mutation Research - Genetic Toxicology and Environmental Mutagenesis, 2005, 581, 91-95.	1.7	40
31	Improvement of an Automatic HPLC System for Nitropolycyclic Aromatic Hydrocarbons: Removal of an Interfering Peak and Increase in the Number of Analytes Analytical Sciences, 2003, 19, 249-253.	1.6	39
32	Exposures to Particulate Air Pollution and Nitro-Polycyclic Aromatic Hydrocarbons among Taxi Drivers in Shenyang, China. Environmental Science & Technology, 2010, 44, 216-221.	10.0	39
33	Atmospheric behaviors of polycyclic aromatic hydrocarbons at a Japanese remote background site, Noto peninsula, from 2004 to 2014. Atmospheric Environment, 2015, 120, 144-151.	4.1	38
34	The Characteristics of Polycyclic Aromatic Hydrocarbons in Different Emission Source Areas in Shenyang, China. International Journal of Environmental Research and Public Health, 2019, 16, 2817.	2.6	38
35	Chemical and Biological Components of Urban Aerosols in Africa: Current Status and Knowledge Gaps. International Journal of Environmental Research and Public Health, 2019, 16, 941.	2.6	38
36	Direct evidence for surface long-lived superoxide radicals photo-generated in TiO ₂ and other metal oxide suspensions. Physical Chemistry Chemical Physics, 2018, 20, 18978-18985.	2.8	37

#	Article	IF	CITATIONS
37	Determination of Atmospheric Nitrobenzanthrones by High-Performance Liquid Chromatography with Chemiluminescence Detection. Analytical Sciences, 2004, 20, 119-123.	1.6	36
38	Sources and Characteristics of Polycyclic Aromatic Hydrocarbons in Ambient Total Suspended Particles in Ulaanbaatar City, Mongolia. International Journal of Environmental Research and Public Health, 2019, 16, 442.	2.6	35
39	Evaluation of urinary metabolites of 1-nitropyrene as biomarkers for exposure to diesel exhaust in taxi drivers of Shenyang, China. Journal of Exposure Science and Environmental Epidemiology, 2013, 23, 170-175.	3.9	34
40	Factors affecting atmospheric 1-, 2-nitropyrenes and 2-nitrofluoranthene in winter at Noto peninsula, a remote background site, Japan. Chemosphere, 2014, 107, 324-330.	8.2	34
41	Emission factors of polycyclic and nitro-polycyclic aromatic hydrocarbons from residential combustion of coal and crop residue pellets. Environmental Pollution, 2017, 231, 1265-1273.	7.5	34
42	Direct measurement of the glucuronide conjugate of 1-hydroxypyrene in human urine by using liquid chromatography with tandem mass spectrometry. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2008, 867, 259-263.	2.3	33
43	Monohydroxylated polycyclic aromatic hydrocarbons inhibit both osteoclastic and osteoblastic activities in teleost scales. Life Sciences, 2009, 84, 482-488.	4.3	30
44	Pollution characteristics and risk assessment of ambient PM2.5-bound PAHs and NPAHs in typical Japanese and New Zealand cities and rural sites. Atmospheric Pollution Research, 2019, 10, 1396-1403.	3.8	30
45	Yearly variation in characteristics and health risk of polycyclic aromatic hydrocarbons and nitro-PAHs in urban shanghai from 2010–2018. Journal of Environmental Sciences, 2021, 99, 72-79.	6.1	30
46	Long-Term Trends in Urban Atmospheric Polycyclic Aromatic Hydrocarbons and Nitropolycyclic Aromatic Hydrocarbons: China, Russia, and Korea from 1999 to 2014. International Journal of Environmental Research and Public Health, 2020, 17, 431.	2.6	28
47	Atmospheric Formation of Hydroxynitropyrenes from a Photochemical Reaction of Particle-Associated 1-Nitropyrene. Environmental Science & Technology, 2011, 45, 3325-3332.	10.0	27
48	Biological Effects of Polycyclic Aromatic Hydrocarbon Derivatives. Journal of UOEH, 2013, 35, 17-24.	0.6	27
49	Emission Characteristics of Polycyclic Aromatic Hydrocarbons and Nitro-Polycyclic Aromatic Hydrocarbons from Open Burning of Rice Straw in the North of Vietnam. International Journal of Environmental Research and Public Health, 2019, 16, 2343.	2.6	27
50	Recent Changes in Atmospheric Polycyclic Aromatic Hydrocarbons (PAHs) and Nitropolycyclic Aromatic Hydrocarbons (NPAHs) in Shenyang, China. Environmental Forensics, 2011, 12, 342-348.	2.6	24
51	Polycyclic aromatic hydrocarbons and their nitro derivatives from indoor biomass-fueled cooking in two rural areas of Thailand: a case study. Air Quality, Atmosphere and Health, 2017, 10, 747-761.	3.3	24
52	Characteristics of Polycyclic Aromatic Hydrocarbons (PAHs) and Common Air Pollutants at Wajima, a Remote Background Site in Japan. International Journal of Environmental Research and Public Health, 2020, 17, 957.	2.6	24
53	Impact of the COVID-19 Outbreak on the Long-range Transport of Particulate PAHs in East Asia. Aerosol and Air Quality Research, 2020, 20, 2035-2046.	2.1	24
54	Homologue and isomer distribution of dioxins observed in water samples collected from Kahokugata Lagoon and inflowing rivers, Japan. Water Research, 2006, 40, 1929-1940.	11.3	23

#	Article	IF	CITATIONS
55	Characteristics and Influencing Factors of Polycyclic Aromatic Hydrocarbons Emitted from Open Burning and Stove Burning of Biomass: A Brief Review. International Journal of Environmental Research and Public Health, 2022, 19, 3944.	2.6	23
56	Simultaneous determination of polycyclic aromatic hydrocarbon quinones by gas chromatography-tandem mass spectrometry, following a one-pot reductive trimethylsilyl derivatization. Journal of Chromatography A, 2016, 1459, 89-100.	3.7	22
57	Characteristics and unique sources of polycyclic aromatic hydrocarbons and nitro-polycyclic aromatic hydrocarbons in PM2.5Âat a highland background site in northwestern Chinaâ~†. Environmental Pollution, 2021, 274, 116527.	7.5	22
58	Identification and Quantification of in Vivo Metabolites of 9,10-Phenanthrenequinone in Human Urine Associated with Producing Reactive Oxygen Species. Chemical Research in Toxicology, 2014, 27, 76-85.	3.3	21
59	Recent analytical methods for atmospheric polycyclic aromatic hydrocarbons and their derivatives. Biomedical Chromatography, 2017, 31, e3862.	1.7	21
60	Polycyclic aromatic hydrocarbons and nitro-polycyclic aromatic hydrocarbons in five East Asian cities: Seasonal characteristics, health risks, and yearly variations. Environmental Pollution, 2021, 287, 117360.	7.5	21
61	Characteristics of Atmospheric Polycyclic Aromatic Hydrocarbons and Nitropolycyclic Aromatic Hydrocarbons in Hanoi-Vietnam, as a Typical Motorbike City. Polycyclic Aromatic Compounds, 2012, 32, 296-312.	2.6	20
62	Polycyclic Aromatic Hydrocarbons and Nitropolycyclic Aromatic Hydrocarbons in Atmospheric Particles and Soil at a Traffic Site in Hanoi, Vietnam. Polycyclic Aromatic Compounds, 2015, 35, 355-371.	2.6	20
63	Characteristics and Health Risks of Particulate Polycyclic Aromatic Hydrocarbons and Nitro-polycyclic Aromatic Hydrocarbons at Urban and Suburban Elementary Schools in Shanghai, China. Asian Journal of Atmospheric Environment, 2019, 13, 266-275.	1.1	20
64	Atmospheric Behaviors of Polycyclic Aromatic Hydrocarbons and Nitropolycyclic Aromatic Hydrocarbons in East Asia. Asian Journal of Atmospheric Environment, 2007, 1, 19-27.	1.1	19
65	Analysis of 8-hydroxy-2′-deoxyguanosine in human urine using hydrophilic interaction chromatography with tandem mass spectrometry. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2012, 893-894, 173-176.	2.3	18
66	Determination of Selected Nitropolycyclic Aromatic Hydrocarbons in Water Samples. Chemical and Pharmaceutical Bulletin, 2013, 61, 1269-1274.	1.3	18
67	Photolysis of Nitroaromatic Compounds under Sunlight: A Possible Daytime Photochemical Source of Nitrous Acid?. Environmental Science and Technology Letters, 2021, 8, 747-752.	8.7	18
68	Comparative Analysis of PM2.5-Bound Polycyclic Aromatic Hydrocarbons (PAHs), Nitro-PAHs (NPAHs), and Water-Soluble Inorganic Ions (WSIIs) at Two Background Sites in Japan. International Journal of Environmental Research and Public Health, 2020, 17, 8224.	2.6	17
69	Long-term variability of inorganic ions in TSP at a remote background site in Japan (Wajima) from 2005 to 2015. Chemosphere, 2021, 264, 128427.	8.2	17
70	Distribution and Source of Atmospheric Polycyclic Aromatic Hydrocarbons and Nitropolycyclic Aromatic Hydrocarbons in Tieling City, Liaoning Province, a Typical Local City in Northeast China. Asian Journal of Atmospheric Environment, 2009, 3, 52-58.	1.1	17
71	A Comparison of Particulate-Bound Polycyclic Aromatic Hydrocarbons Long-Range Transported from the Asian Continent to the Noto Peninsula and Fukue Island, Japan. Asian Journal of Atmospheric Environment, 2018, 12, 369-376.	1.1	17
72	Hydrogen peroxide–sodium hydrosulfite chemiluminescence system combined with high-performance liquid chromatography for determination of 1-hydroxypyrene in airborne particulates. Talanta, 2011, 85, 2711-2714.	5.5	16

#	Article	IF	CITATIONS
73	Assessing Approaches of Human Inhalation Exposure to Polycyclic Aromatic Hydrocarbons: A Review. International Journal of Environmental Research and Public Health, 2021, 18, 3124.	2.6	16
74	Apoptosis and blood-testis barrier disruption during male reproductive dysfunction induced by PAHs of different molecular weights. Environmental Pollution, 2022, 300, 118959.	7.5	16
75	Determination of airborne particle-associated benz[a]anthracene-7,12-quinone using high-performance liquid chromatography with in-line reduction and fluorescence detection. Journal of Chromatography A, 2009, 1216, 6758-6761.	3.7	14
76	Estrogenic/Antiestrogenic Activities of Quinoid Polycyclic Aromatic Hydrocarbons. Journal of Health Science, 2011, 57, 274-280.	0.9	14
77	On-Line Concentration and Fluorescence Determination HPLC for Polycyclic Aromatic Hydrocarbons in Seawater Samples and Its Application to Japan Sea. Chemical and Pharmaceutical Bulletin, 2012, 60, 531-535.	1.3	14
78	Size Distribution of Chlorinated Polycyclic Aromatic Hydrocarbons in Atmospheric Particles. Archives of Environmental Contamination and Toxicology, 2017, 72, 58-64.	4.1	14
79	Calculating sources of combustion-derived particulates using 1-nitropyrene and pyrene as markers. Environmental Pollution, 2020, 265, 114730.	7.5	14
80	Impact of COVID-19 Outbreak on the Long-Range Transport of Common Air Pollutants in KUWAMS. Chemical and Pharmaceutical Bulletin, 2021, 69, 237-245.	1.3	14
81	Atmospheric Polycyclic and Nitropolycyclic Aromatic Hydrocarbons in an Iron-manufacturing City. Asian Journal of Atmospheric Environment, 2016, 10, 90-98.	1.1	14
82	Source contribution analysis of surface particulate polycyclic aromatic hydrocarbon concentrations in northeastern Asia by source–receptor relationships. Environmental Pollution, 2013, 182, 324-334.	7.5	13
83	Interannual Survey on Polycyclic Aromatic Hydrocarbons (PAHs) in Seawater of North Nanao Bay, Ishikawa, Japan, from 2015 to 2018: Sources, Pathways and Ecological Risk Assessment. International Journal of Environmental Research and Public Health, 2020, 17, 904.	2.6	13
84	Emission factors of selected air pollutants from rice straw burning in Hanoi, Vietnam. Air Quality, Atmosphere and Health, 2021, 14, 1757-1771.	3.3	13
85	Simultaneous Determination of Polycyclic Aromatic Hydrocarbons and Their Nitro-derivatives in Airborne Particulates by Using Two-dimensional High-performance Liquid Chromatography with On-line Reduction and Fluorescence Detection. Asian Journal of Atmospheric Environment, 2017, 11, 283-299.	1.1	13
86	Variations in traffic-related polycyclic aromatic hydrocarbons in PM2.5 in Kanazawa, Japan, after the implementation of a new vehicle emission regulation. Journal of Environmental Sciences, 2022, 121, 38-47.	6.1	13
87	Determination of particle-associated hydroxynitropyrenes with correction for chemical degradation on a quartz fibre filter during high volume air sampling. International Journal of Environmental Analytical Chemistry, 2010, 90, 976-987.	3.3	12
88	Natural aeolian dust particles have no substantial effect on atmospheric polycyclic aromatic hydrocarbons (PAHs): A laboratory study based on naphthalene. Environmental Pollution, 2020, 263, 114454.	7.5	12
89	INTERACTION OF HYDROXYLATED POLYCYCLIC AROMATIC HYDROCARBONS TO ESTROGEN RECEPTOR. Polycyclic Aromatic Compounds, 2008, 28, 382-391.	2.6	11
90	Activation of 5-Lipoxygenase and NF-κB in the Action of Acenaphthenequinone by Modulation of Oxidative Stress. Toxicological Sciences, 2008, 101, 152-158.	3.1	11

#	Article	IF	CITATIONS
91	Source–Receptor Relationship Analysis of the Atmospheric Deposition of PAHs Subject to Long-Range Transport in Northeast Asia. Environmental Science & Technology, 2017, 51, 7972-7981.	10.0	11
92	Characteristics and Health Risks of Polycyclic Aromatic Hydrocarbons and Nitro-PAHs in Xinxiang, China in 2015 and 2017. International Journal of Environmental Research and Public Health, 2021, 18, 3017.	2.6	11
93	Mutagenicities and Endocrine-disrupting Activities of 1-Hydroxy-2-nitropyrene and 1-Hydroxy-5-nitropyrene. Journal of Health Science, 2011, 57, 372-377.	0.9	10
94	Atmospheric Behaviors of Polycyclic Aromatic Hydrocarbons in East Asia. Genes and Environment, 2014, 36, 152-159.	2.1	10
95	Seawater Polluted with Highly Concentrated Polycyclic Aromatic Hydrocarbons Suppresses Osteoblastic Activity in the Scales of Goldfish, <i>Carassius auratus</i> . Zoological Science, 2016, 33, 407-413.	0.7	10
96	Evaluation of Endocrine Disrupting Activities of Monohydroxylated Derivatives of 1-nitropyrene by Yeast Two-hybrid Assay. Journal of Health Science, 2008, 54, 118-122.	0.9	9
97	Characteristics of Atmospheric Polycyclic Aromatic Hydrocarbons in Shenyang, Shanghai and Fuzhou, China. Bunseki Kagaku, 2013, 62, 267-273.	0.2	9
98	Identification and Characterization of Oxidative Metabolites of 1-Chloropyrene. Chemical Research in Toxicology, 2015, 28, 1728-1736.	3.3	9
99	Benzo[c]fluorene in Urban Air: HPLC Determination and Mutagenic Contribution Relative to Benzo[a]pyrene. Analytical Sciences, 2016, 32, 233-236.	1.6	9
100	Personal inhalation exposure to polycyclic aromatic hydrocarbons and their nitro-derivatives in rural residents in northern Thailand. Environmental Monitoring and Assessment, 2017, 189, 510.	2.7	9
101	Heterogeneous photochemical uptake of NO2 on the soil surface as an important ground-level HONO source. Environmental Pollution, 2021, 271, 116289.	7.5	9
102	Concentrations and Sources of Atmospheric PM, Polycyclic Aromatic Hydrocarbons and Nitropolycyclic Aromatic Hydrocarbons in Kanazawa, Japan. Atmosphere, 2021, 12, 256.	2.3	9
103	PM-Bound Polycyclic Aromatic Hydrocarbons and Nitro-Polycyclic Aromatic Hydrocarbons in the Ambient Air of Vladivostok: Seasonal Variation, Sources, Health Risk Assessment and Long-Term Variability. International Journal of Environmental Research and Public Health, 2022, 19, 2878.	2.6	9
104	Determination of 1-nitropyrene metabolites by high-performance liquid chromatography with chemiluminescence detection. Journal of Chromatography A, 2006, 1107, 286-289.	3.7	8
105	Determination of 1-nitropyrene in low volume ambient air samples by high-performance liquid chromatography with fluorescence detection. Journal of Chromatography A, 2009, 1216, 4625-4628.	3.7	8
106	Comparison of Transcriptomics Changes Induced by TCS and MTCS Exposure in Human Hepatoma HepG2 Cells. ACS Omega, 2020, 5, 10715-10724.	3.5	8
107	Atmospheric Behaviour of Polycyclic and Nitro-Polycyclic Aromatic Hydrocarbons and Water-Soluble Inorganic Ions in Winter in Kirishima, a Typical Japanese Commercial City. International Journal of Environmental Research and Public Health, 2021, 18, 688.	2.6	8
108	Variations in traffic-related water-soluble inorganic ions in PM2.5 in Kanazawa, Japan, after the implementation of a new vehicle emission regulation. Atmospheric Pollution Research, 2021, 12, 101233.	3.8	8

#	Article	IF	CITATIONS
109	Hydroxylated benzo[c]phenanthrene metabolites cause osteoblast apoptosis and skeletal abnormalities in fish. Ecotoxicology and Environmental Safety, 2022, 234, 113401.	6.0	8
110	Long-range transport of fluoride in East Asia monitored at Noto Peninsula, Japan. Science of the Total Environment, 2009, 407, 4681-4686.	8.0	7
111	Temporal Variations of Polycyclic Aromatic Hydrocarbons in the Seawater at Tsukumo Bay, Noto Peninsula, Japan, during 2014–2018. International Journal of Environmental Research and Public Health, 2020, 17, 873.	2.6	7
112	Calculating source contributions to urban atmospheric polycyclic aromatic hydrocarbons and nitropolycyclic aromatic hydrocarbons using 1-nitropyrene and pyrene: An application to an Asian dust event. Chemosphere, 2021, 280, 130662.	8.2	6
113	Development of HPLC Determination Method for Trace Levels of 1-, 2-Nitropyrenes and 2-Nitrofluoranthene in Airborne Particulates and Its Application to Samples Collected at Noto Peninsula. Asian Journal of Atmospheric Environment, 2011, 5, 146-151.	1.1	6
114	Seasonal variations in marine polycyclic aromatic hydrocarbons off Oki Island, Sea of Japan, during 2015–2019. Marine Pollution Bulletin, 2022, 180, 113749.	5.0	6
115	Persistent organic pollutants in red-crowned cranes (Grus japonensis) from Hokkaido, Japan. Ecotoxicology and Environmental Safety, 2018, 147, 367-372.	6.0	5
116	Identification of Long-range Transported Polycyclic Aromatic Hydrocarbons in Snow at Mt. Tateyama, Japan. Aerosol and Air Quality Research, 2019, 19, 1252-1258.	2.1	5
117	Personal and Atmospheric Concentrations of Ozone in Southeastern Hyogo Prefecture, Japan. Chemical and Pharmaceutical Bulletin, 2012, 60, 962-966.	1.3	4
118	Gene Expression Changes of Phases I and II Metabolizing Enzymes Induced by PAH Derivatives. Polycyclic Aromatic Compounds, 2012, 32, 141-153.	2.6	4
119	Quantification of Hydroxylated Polycyclic Aromatic Hydrocarbons in Airborne Particulate Matter by GC/MS. Bunseki Kagaku, 2019, 68, 839-845.	0.2	4
120	Long-Term and Seasonal Changes in Sources of Urban Atmospheric Particulates in the Western Pacific. Applied Sciences (Switzerland), 2022, 12, 2149.	2.5	4
121	Development of Analytical Methods for Hazardous Nitropolycyclic Aromatic Hydrocarbons and Studies on Their Environmental Behavior. Bunseki Kagaku, 2007, 56, 905-920.	0.2	2
122	Atmospheric Formation of Hydroxynitrofluoranthene from Photochemical Reactions of 2-Nitrofluoranthene. Polycyclic Aromatic Compounds, 2012, 32, 177-187.	2.6	2
123	Characterization and Functionality of Immidazolium Ionic Liquids Modified Magnetic Nanoparticles. Journal of Chemistry, 2013, 2013, 1-7.	1.9	2
124	Seasonal Change of Gas/Particle Partitioning of Atmospheric Dioxins. Journal of Health Science, 2006, 52, 50-57.	0.9	1
125	Quantification of Polycyclic Aromatic Hydrocarbons (PAHs) in Cigarette Smoke Particulates by HPLC with Fluorescence Detection. Bunseki Kagaku, 2014, 63, 23-29.	0.2	1
126	Improvement of the Analytical Method for Quinoid Polycyclic Aromatic Hydrocarbons Using HPLC with In-line Reduction and Fluorescence Detection: Application to Soluble Organic Fraction of Airborne Particles. Bunseki Kagaku, 2013, 62, 979-984.	0.2	0

#	Article	IF	CITATIONS
127	Size Distribution of Dechloranes in Particulate Matter . Journal of Environmental Chemistry, 2016, 26, 89-93.	0.2	0