Marcos Fg Rocha

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/230468/publications.pdf

Version: 2024-02-01

73 papers

1,185 citations

471509 17 h-index 501196 28 g-index

73 all docs

73 docs citations

73 times ranked 1439 citing authors

#	Article	IF	CITATIONS
1	Research advances on the multiple uses of Moringa oleifera: A sustainable alternative for socially neglected population. Asian Pacific Journal of Tropical Medicine, 2017, 10, 621-630.	0.8	115
2	Antifungal effects of the flavonoids kaempferol and quercetin: a possible alternative for the control of fungal biofilms. Biofouling, 2019, 35, 320-328.	2.2	73
3	Candida tropicalis isolates obtained from veterinary sources show resistance to azoles and produce virulence factors. Medical Mycology, 2015, 53, 145-152.	0.7	51
4	Terpinen-4-ol, tyrosol, and \hat{l}^2 -lapachone as potential antifungals against dimorphic fungi. Brazilian Journal of Microbiology, 2016, 47, 917-924.	2.0	40
5	Quantitative and structural analyses of the in vitro and ex vivo biofilm-forming ability of dermatophytes. Journal of Medical Microbiology, 2017, 66, 1045-1052.	1.8	34
6	<i>In vitro</i> susceptibility of antifungal drugs against <i>Sporothrix brasiliensis</i> recovered from cats with sporotrichosis in Brazil: Table 1 Medical Mycology, 2016, 54, 275-279.	0.7	32
7	Antifungal susceptibility of Sporothrix schenckii complex biofilms. Medical Mycology, 2018, 56, 297-306.	0.7	32
8	Trichosporon inkin biofilms produce extracellular proteases and exhibit resistance to antifungals. Journal of Medical Microbiology, 2015, 64, 1277-1286.	1.8	30
9	Alkylphenol Activity against Candida spp. and Microsporum canis: A Focus on the Antifungal Activity of Thymol, Eugenol and O-Methyl Derivatives. Molecules, 2011, 16, 6422-6431.	3 . 8	29
10	Malassezia pachydermatis from animals: Planktonic and biofilm antifungal susceptibility and its virulence arsenal. Veterinary Microbiology, 2018, 220, 47-52.	1.9	29
11	Crossâ€resistance to fluconazole induced by exposure to the agricultural azole tetraconazole: an environmental resistance school?. Mycoses, 2016, 59, 281-290.	4.0	28
12	Azole resistance in <i>Candida albicans</i> from animals: Highlights on efflux pump activity and gene overexpression. Mycoses, 2017, 60, 462-468.	4.0	28
13	Candida tropicalis from veterinary and human sources shows similar in vitro hemolytic activity, antifungal biofilm susceptibility and pathogenesis against Caenorhabditis elegans. Veterinary Microbiology, 2016, 192, 213-219.	1.9	25
14	Tumor necrosis factor prevents Candida albicans biofilm formation. Scientific Reports, 2017, 7, 1206.	3.3	23
15	In vitro and in vivo leishmanicidal activity of a ruthenium nitrosyl complex against Leishmania (Viannia) braziliensis. Acta Tropica, 2019, 192, 61-65.	2.0	21
16	Promethazine improves antibiotic efficacy and disrupts biofilms of <i>Burkholderia pseudomallei</i> Biofouling, 2017, 33, 88-97.	2.2	19
17	Potassium iodide and miltefosine inhibit biofilms of Sporothrix schenckii species complex in yeast and filamentous forms. Medical Mycology, 2019, 57, 764-772.	0.7	19
18	Antifungal susceptibility and virulence of Candida parapsilosis species complex: an overview of their pathogenic potential. Journal of Medical Microbiology, 2018, 67, 903-914.	1.8	19

#	Article	IF	CITATIONS
19	Evidence of Fluconazole-Resistant Candida Species in Tortoises and Sea Turtles. Mycopathologia, 2015, 180, 421-426.	3.1	18
20	Vibrio spp. from Macrobrachium amazonicum prawn farming are inhibited by Moringa oleifera extracts. Asian Pacific Journal of Tropical Medicine, 2015, 8, 919-922.	0.8	18
21	The HIV aspartyl protease inhibitor ritonavir impairs planktonic growth, biofilm formation and proteolytic activity in <i>Trichosporon</i> Spp Biofouling, 2017, 33, 640-650.	2.2	18
22	In vitro activity of azole derivatives and griseofulvin against planktonic and biofilm growth of clinical isolates of dermatophytes. Mycoses, 2018, 61, 449-454.	4.0	18
23	Exposure of Candida parapsilosis complex to agricultural azoles: An overview of the role of environmental determinants for the development of resistance. Science of the Total Environment, 2019, 650, 1231-1238.	8.0	18
24	<i>In vitro</i> and <i>ex vivo</i> biofilms of dermatophytes: a new panorama for the study of antifungal drugs. Biofouling, 2020, 36, 783-791.	2.2	18
25	Collateral consequences of agricultural fungicides on pathogenic yeasts: A One Health perspective to tackle azole resistance. Mycoses, 2022, 65, 303-311.	4.0	18
26	Farnesol inhibits planktonic cells and antifungal-tolerant biofilms of Trichosporon asahii and Trichosporon inkin. Medical Mycology, 2019, 57, 1038-1045.	0.7	17
27	<i>Ex vivo</i> biofilm-forming ability of dermatophytes using dog and cat hair: an ethically viable approach for an infection model. Biofouling, 2019, 35, 392-400.	2.2	17
28	In vitro inhibitory activity of terpenic derivatives against clinical and environmental strains of the Sporothrix schenkii complex. Medical Mycology, 2015, 53, 93-98.	0.7	16
29	Inhibitory effect of a lipopeptide biosurfactant produced by <i>Bacillus subtilis</i> on planktonic and sessile cells of <i>Trichosporon</i> spp Biofouling, 2018, 34, 309-319.	2.2	16
30	Pentamidine inhibits the growth of <i>Sporothrix schenckii</i> complex and exhibits synergism with antifungal agents. Future Microbiology, 2018, 13, 1129-1140.	2.0	16
31	Trends in antifungal susceptibility and virulence of <i>Candida </i> spp. from the nasolacrimal duct of horses. Medical Mycology, 2016, 54, 147-154.	0.7	15
32	Sodium butyrate inhibits planktonic cells and biofilms of Trichosporon spp Microbial Pathogenesis, 2019, 130, 219-225.	2.9	15
33	The yeast, the antifungal, and the wardrobe: a journey into antifungal resistance mechanisms of <i>Candida tropicalis </i> Canadian Journal of Microbiology, 2020, 66, 377-388.	1.7	15
34	Candida parapsilosis complex in veterinary practice: A historical overview, biology, virulence attributes and antifungal susceptibility traits. Veterinary Microbiology, 2017, 212, 22-30.	1.9	14
35	Biofilms of <i>Candida</i> spp. from the ocular conjunctiva of horses with reduced azole susceptibility: a complicating factor for the treatment of keratomycosis?. Veterinary Ophthalmology, 2017, 20, 539-546.	1.0	13
36	Mini-review: from <i>inÂvitro</i> to <i>ex vivo</i> studies: an overview of alternative methods for the study of medical biofilms. Biofouling, 2020, 36, 1-21.	2.2	13

3

#	Article	IF	CITATIONS
37	\hat{l}^2 -lactam antibiotics & amp; vancomycin increase the growth & amp; virulence of <i>Candida</i> spp Future Microbiology, 2018, 13, 869-875.	2.0	12
38	Chlorpromazine-impregnated catheters as a potential strategy to control biofilm-associated urinary tract infections. Future Microbiology, 2019, 14, 1023-1034.	2.0	12
39	Azole resistance in Candida from animals calls for the One Health approach to tackle the emergence of antimicrobial resistance. Medical Mycology, 2020, 58, 896-905.	0.7	11
40	Biofilm formation on cat claws by Sporothrix species: An ex vivo model. Microbial Pathogenesis, 2021, 150, 104670.	2.9	11
41	Rhamnolipid enhances Burkholderia pseudomallei biofilm susceptibility, disassembly and production of virulence factors. Future Microbiology, 2020, 15, 1109-1121.	2.0	11
42	Antifungal activity of promethazine and chlorpromazine against planktonic cells and biofilms of Cryptococcus neoformans/Cryptococcus gattii complex species. Medical Mycology, 2020, 58, 906-912.	0.7	10
43	In vitro antimicrobial susceptibility of clinical and environmental strains of Burkholderia pseudomallei from Brazil. International Journal of Antimicrobial Agents, 2013, 42, 375-377.	2.5	9
44	Virulence and antimicrobial susceptibility of clinical and environmental strains of <i>Aeromonas</i> spp. from northeastern Brazil. Canadian Journal of Microbiology, 2015, 61, 597-601.	1.7	9
45	RYP1 gene as a target for molecular diagnosis of histoplasmosis. Journal of Microbiological Methods, 2016, 130, 112-114.	1.6	9
46	Antiretroviral drugs saquinavir and ritonavir reduce inhibitory concentration values of itraconazole against Histoplasma capsulatum strains in vitro. Brazilian Journal of Infectious Diseases, 2016, 20, 155-159.	0.6	9
47	Aeromonas and Plesiomonas species from scarlet ibis (Eudocimus ruber) and their environment: monitoring antimicrobial susceptibility and virulence. Antonie Van Leeuwenhoek, 2017, 110, 33-43.	1.7	9
48	Terpinen-4-ol inhibits the growth of <i>Sporothrix schenckii</i> complex and exhibits synergism with antifungal agents. Future Microbiology, 2019, 14, 1221-1233.	2.0	9
49	Yeasts from Scarlet ibises (Eudocimus ruber): A focus on monitoring the antifungal susceptibility of Candida famata and closely related species. Medical Mycology, 2017, 55, 725-732.	0.7	9
50	Synthesis and inÂvitro antifungal activity of isoniazid-derived hydrazones against Coccidioides posadasii. Microbial Pathogenesis, 2016, 98, 1-5.	2.9	8
51	Efflux pump inhibition controls growth and enhances antifungal susceptibility of <i>Fusarium solani</i> species complex. Future Microbiology, 2020, 15, 9-20.	2.0	8
52	Antifungal effect of anthraquinones against <i>Cryptococcus neoformans</i> : detection of synergism with amphotericin B. Medical Mycology, 2021, 59, 564-570.	0.7	8
53	In vitro effects of promethazine on cell morphology and structure and mitochondrial activity of azole-resistant Candida tropicalis. Medical Mycology, 2018, 56, 1012-1022.	0.7	7
54	Cefepime and Amoxicillin Increase Metabolism and Enhance Caspofungin Tolerance of Candida albicans Biofilms. Frontiers in Microbiology, 2019, 10, 1337.	3.5	7

#	Article	IF	CITATIONS
55	Exogenous fungal quorum sensing molecules inhibit planktonic cell growth and modulate filamentation and biofilm formation in the <i>Sporothrix schenckii</i> complex. Biofouling, 2020, 36, 909-921.	2.2	7
56	Cryptococcus neoformans/Cryptococcus gattii species complex melanized by epinephrine: Increased yeast survival after amphotericin B exposure. Microbial Pathogenesis, 2020, 143, 104123.	2.9	7
57	Trichosporon asahii and Trichosporon inkin Biofilms Produce Antifungal-Tolerant Persister Cells. Frontiers in Cellular and Infection Microbiology, 2021, 11, 645812.	3.9	7
58	Clinical and environmental isolates of Burkholderia pseudomallei from Brazil: Genotyping and detection of virulence gene. Asian Pacific Journal of Tropical Medicine, 2017, 10, 945-951.	0.8	6
59	A proposal for antifungal epidemiological cut-off values against Histoplasma capsulatum var. capsulatum based on the susceptibility of isolates from HIV-infected patients with disseminated histoplasmosis in Northeast Brazil. International Journal of Antimicrobial Agents, 2018, 52, 272-277.	2.5	6
60	Diclofenac exhibits synergism with azoles against planktonic cells and biofilms of <i>Candida tropicalis</i> . Biofouling, 2020, 36, 528-536.	2.2	6
61	Inhibitory effect of Brazilian red propolis on planktonic and biofilm forms of Clostridioides difficile. Anaerobe, 2021, 69, 102322.	2.1	6
62	Proton pump inhibitors versus <i>Cryptococcus</i> species: effects on <i>in vitro</i> susceptibility and melanin production. Future Microbiology, 2019, 14, 489-497.	2.0	5
63	Inhibitory activity of isoniazid and ethionamide against Cryptococcus biofilms. Canadian Journal of Microbiology, 2015, 61, 827-836.	1.7	4
64	Proposal for a microcosm biofilm model for the study of vulvovaginal candidiasis. Biofouling, 2020, 36, 610-620.	2.2	4
65	Azole-Resilient Biofilms and Non-wild Type C. albicans Among Candida Species Isolated from Agricultural Soils Cultivated with Azole Fungicides: an Environmental Issue?. Microbial Ecology, 2021, 82, 1080-1083.	2.8	4
66	Darunavir inhibits Cryptococcus neoformans/Cryptococcus gattii species complex growth and increases the susceptibility of biofilms to antifungal drugs. Journal of Medical Microbiology, 2020, 69, 830-837.	1.8	4
67	Inhibitory effect of proteinase K against dermatophyte biofilms: an alternative for increasing theÂantifungal effects of terbinafine and griseofulvin. Biofouling, 2022, 38, 286-297.	2.2	4
68	Enterobacteria and Vibrio from Macrobrachium amazonicum prawn farming in Fortaleza, Cear \tilde{A}_i , Brazil. Asian Pacific Journal of Tropical Medicine, 2016, 9, 27-31.	0.8	2
69	Antifungal activity of deferiprone and EDTA against <i>Sporothrix</i> spp.: Effect on planktonic growth and biofilm formation. Medical Mycology, 2021, 59, 537-544.	0.7	1
70	Yeast microbiota of free-ranging amphibians and reptiles from Caatinga biome in Cear \tilde{A}_i State, Northeast Brazil: High pathogenic potential of Candida famata. Ciencia Rural, 2021, 51, .	0.5	1
71	Vancomycin enhances growth and virulence of Trichosporon spp. planktonic cells and biofilms. Medical Mycology, 2021, 59, 793-801.	0.7	1
72	Anthraquinones from <i>Aloe</i> spp. inhibit <i>Cryptococcus neoformans sensu stricto</i> effects against growing and mature biofilms. Biofouling, 2021, 37, 809-817.	2.2	1

#	#	Article	IF	CITATIONS
7	73	<i>Enterococcus faecalis</i> and <i>Candida albicans</i> dual-species biofilm: establishment of an <i>in vitro</i> protocol and characterization. Biofouling, 0, , 1-13.	2.2	1