
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2304412/publications.pdf Version: 2024-02-01



EVELVN K E VIM

| #  | Article                                                                                                                                                                                                                | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Rabbit Surgery Protocol for End-to-End and End-to-Side Vascular Graft Anastomosis. Methods in<br>Molecular Biology, 2022, 2375, 177-189.                                                                               | 0.9  | 1         |
| 2  | Vascular Imaging in Small Animals Using Clinical Ultrasound Scanners. Methods in Molecular<br>Biology, 2022, 2375, 191-201.                                                                                            | 0.9  | 0         |
| 3  | Characterization and Functional Assessment of Endothelial Progenitor Cells in Ischemic Stroke<br>Patients. Stem Cell Reviews and Reports, 2021, 17, 952-967.                                                           | 3.8  | 22        |
| 4  | Changing Compliance of Poly(Vinyl Alcohol) Tubular Scaffold for Vascular Graft Applications<br>Through Modifying Interlayer Adhesion and Crosslinking Density. Frontiers in Materials, 2021, 7, .                      | 2.4  | 7         |
| 5  | Enhanced efficiency of nonviral direct neuronal reprogramming on topographical patterns.<br>Biomaterials Science, 2021, 9, 5175-5191.                                                                                  | 5.4  | 9         |
| 6  | POPX2 phosphatase enhances topographical contact guidance for cell morphology and migration.<br>Biomedical Materials (Bristol), 2021, 16, 025020.                                                                      | 3.3  | 3         |
| 7  | The effects of surface topography modification on hydrogel properties. APL Bioengineering, 2021, 5, 031509.                                                                                                            | 6.2  | 31        |
| 8  | Fucoidan for cardiovascular application and the factors mediating its activities. Carbohydrate Polymers, 2021, 270, 118347.                                                                                            | 10.2 | 27        |
| 9  | Topography elicits distinct phenotypes and functions in human primary and stem cell derived endothelial cells. Biomaterials, 2020, 234, 119747.                                                                        | 11.4 | 16        |
| 10 | One-Pot Covalent Grafting of Gelatin on Poly(Vinyl Alcohol) Hydrogel to Enhance Endothelialization<br>and Hemocompatibility for Synthetic Vascular Graft Applications. ACS Applied Bio Materials, 2020, 3,<br>693-703. | 4.6  | 26        |
| 11 | Effect of sterilization treatment on mechanical properties, biodegradation, bioactivity and printability of GelMA hydrogels. Biomedical Materials (Bristol), 2020, 15, 065017.                                         | 3.3  | 36        |
| 12 | Gelatin Methacrylate as an Enzyme-Controlled Release Vehicle of Hyaluronic Acid for the Treatment of Recurrent Corneal Erosion. ACS Applied Bio Materials, 2020, 3, 6214-6223.                                         | 4.6  | 2         |
| 13 | Emerging Methods for Enhancing Pluripotent Stem Cell Expansion. Frontiers in Cell and<br>Developmental Biology, 2020, 8, 70.                                                                                           | 3.7  | 28        |
| 14 | Current understanding of intimal hyperplasia and effect of compliance in synthetic small diameter vascular grafts. Biomaterials Science, 2020, 8, 4383-4395.                                                           | 5.4  | 47        |
| 15 | Effect of Ethylene Oxide Sterilization on Polyvinyl Alcohol Hydrogel Compared with Gamma<br>Radiation. Tissue Engineering - Part A, 2020, 26, 1077-1090.                                                               | 3.1  | 18        |
| 16 | Fucoidan functionalization on poly(vinyl alcohol) hydrogels for improved endothelialization and hemocompatibility. Biomaterials, 2020, 249, 120011.                                                                    | 11.4 | 67        |
| 17 | Bioconjugation of a Collagen-Mimicking Peptide Onto Poly(vinyl alcohol) Encourages<br>Endothelialization While Minimizing Thrombosis. Frontiers in Bioengineering and Biotechnology,<br>2020, 8, 621768.               | 4.1  | 10        |
| 18 | Extracellular matrix and biomimetic engineering microenvironment for neuronal differentiation.<br>Neural Regeneration Research, 2020, 15, 573.                                                                         | 3.0  | 45        |

| #  | Article                                                                                                                                                                                                                                | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Cell–Substrate Interactions. , 2019, , 437-468.                                                                                                                                                                                        |      | 10        |
| 20 | Biomaterials and controlled release strategy for epithelial wound healing. Biomaterials Science, 2019,<br>7, 4444-4471.                                                                                                                | 5.4  | 47        |
| 21 | Nanoscale Architecture of the Cortical Actin Cytoskeleton in Embryonic Stem Cells. Cell Reports, 2019, 28, 1251-1267.e7.                                                                                                               | 6.4  | 62        |
| 22 | Environmental Specification of Pluripotent Stem Cell Derived Endothelial Cells Toward Arterial and<br>Venous Subtypes. Frontiers in Bioengineering and Biotechnology, 2019, 7, 143.                                                    | 4.1  | 13        |
| 23 | Biomimetic modification of poly(vinyl alcohol): Encouraging endothelialization and preventing thrombosis with antiplatelet monotherapy. Acta Biomaterialia, 2019, 86, 291-299.                                                         | 8.3  | 43        |
| 24 | Optimization of a Novel Preferential Covered Stent through Bench Experiments and in Vitro Platelet<br>Activation Studies. ACS Biomaterials Science and Engineering, 2019, 5, 6216-6230.                                                | 5.2  | 1         |
| 25 | Molecular Organization of Integrin-Based Adhesion Complexes in Mouse Embryonic Stem Cells. ACS<br>Biomaterials Science and Engineering, 2019, 5, 3828-3842.                                                                            | 5.2  | 21        |
| 26 | Luminal Plasma Treatment for Small Diameter Polyvinyl Alcohol Tubular Scaffolds. Frontiers in<br>Bioengineering and Biotechnology, 2019, 7, 117.                                                                                       | 4.1  | 12        |
| 27 | Determination of critical shear stress for maturation of human pluripotent stem cellâ€derived<br>endothelial cells towards an arterial subtype. Biotechnology and Bioengineering, 2019, 116, 1164-1175.                                | 3.3  | 27        |
| 28 | Human Rett-derived neuronal progenitor cells in 3D graphene scaffold as an <i>in vitro</i> platform<br>to study the effect of electrical stimulation on neuronal differentiation. Biomedical Materials<br>(Bristol), 2018, 13, 034111. | 3.3  | 32        |
| 29 | Functional differences between healthy and diabetic endothelial cells on topographical cues.<br>Biomaterials, 2018, 153, 70-84.                                                                                                        | 11.4 | 23        |
| 30 | Reactive Ion Plasma Modification of Poly(Vinylâ€Alcohol) Increases Primary Endothelial Cell Affinity<br>and Reduces Thrombogenicity. Macromolecular Bioscience, 2018, 18, e1800132.                                                    | 4.1  | 16        |
| 31 | Sequential Application of Discrete Topographical Patterns Enhances Derivation of Functional<br>Mesencephalic Dopaminergic Neurons from Human Induced Pluripotent Stem Cells. Scientific Reports,<br>2018, 8, 9567.                     | 3.3  | 16        |
| 32 | Anisotropic traction stresses and focal adhesion polarization mediates topography-induced cell elongation. Biomaterials, 2018, 181, 103-112.                                                                                           | 11.4 | 29        |
| 33 | Improving Surgical Methods for Studying Vascular Grafts in Animal Models. Tissue Engineering - Part<br>C: Methods, 2018, 24, 457-464.                                                                                                  | 2.1  | 16        |
| 34 | Temporal Changes in Nucleus Morphology, Lamin A/C and Histone Methylation During<br>Nanotopography-Induced Neuronal Differentiation of Stem Cells. Frontiers in Bioengineering and<br>Biotechnology, 2018, 6, 69.                      | 4.1  | 35        |
| 35 | Human mesenchymal stem cell basal membrane bending on gratings is dependent on both grating width and curvature. Scientific Reports, 2018, 8, 6444.                                                                                    | 3.3  | 4         |
| 36 | Evaluation of the Topographical Influence on the Cellular Behavior of Human Umbilical Vein<br>Endothelial Cells. Advanced Biology, 2018, 2, 1700217.                                                                                   | 3.0  | 19        |

| #  | Article                                                                                                                                                                                                                 | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Microlens topography combined with vascular endothelial growth factor induces endothelial<br>differentiation of human mesenchymal stem cells into vasculogenic progenitors. Biomaterials, 2017,<br>131, 68-85.          | 11.4 | 16        |
| 38 | Sequentially-crosslinked bioactive hydrogels as nano-patterned substrates with customizable<br>stiffness and degradation for corneal tissue engineering applications. Biomaterials, 2017, 120, 139-154.                 | 11.4 | 179       |
| 39 | Correlation and Comparison of Cortical and Hippocampal Neural Progenitor Morphology and<br>Differentiation through the Use of Micro- and Nano-Topographies. Journal of Functional<br>Biomaterials, 2017, 8, 35.         | 4.4  | 5         |
| 40 | Cell and Molecular Mechanics in Health and Disease. BioMed Research International, 2017, 2017, 1-2.                                                                                                                     | 1.9  | 2         |
| 41 | Submillimeter Diameter Poly(Vinyl Alcohol) Vascular Graft Patency in Rabbit Model. Frontiers in<br>Bioengineering and Biotechnology, 2016, 4, 44.                                                                       | 4.1  | 31        |
| 42 | From nano to micro: topographical scale and its impact on cell adhesion, morphology and contact guidance. Journal of Physics Condensed Matter, 2016, 28, 183001.                                                        | 1.8  | 202       |
| 43 | Mechanical confinement triggers glioma linear migration dependent on formin FHOD3. Molecular<br>Biology of the Cell, 2016, 27, 1246-1261.                                                                               | 2.1  | 51        |
| 44 | In Vitro Topographical Model of Fuchs Dystrophy for Evaluation of Corneal Endothelial Cell<br>Monolayer Formation. Advanced Healthcare Materials, 2016, 5, 2896-2910.                                                   | 7.6  | 44        |
| 45 | Cell Therapy: In Vitro Topographical Model of Fuchs Dystrophy for Evaluation of Corneal Endothelial<br>Cell Monolayer Formation (Adv. Healthcare Mater. 22/2016). Advanced Healthcare Materials, 2016, 5,<br>2960-2960. | 7.6  | 0         |
| 46 | Cell contractility arising from topography and shear flow determines human mesenchymal stem cell fate. Scientific Reports, 2016, 6, 20415.                                                                              | 3.3  | 62        |
| 47 | Fibers by interfacial polyelectrolyte complexation – processes, materials and applications. Materials Today, 2016, 19, 437-450.                                                                                         | 14.2 | 55        |
| 48 | Contribution of actin filaments and microtubules to cell elongation and alignment depends on the grating depth of microgratings. Journal of Nanobiotechnology, 2016, 14, 35.                                            | 9.1  | 36        |
| 49 | Planar and tubular patterning of micro and nano-topographies on poly(vinyl alcohol) hydrogel for<br>improved endothelial cell responses. Biomaterials, 2016, 84, 184-195.                                               | 11.4 | 77        |
| 50 | Composite Scaffolds of Interfacial Polyelectrolyte Fibers for Temporally Controlled Release of<br>Biomolecules. Journal of Visualized Experiments, 2015, , e53079.                                                      | 0.3  | 1         |
| 51 | Composite Scaffold of Poly(Vinyl Alcohol) and Interfacial Polyelectrolyte Complexation Fibers for<br>Controlled Biomolecule Delivery. Frontiers in Bioengineering and Biotechnology, 2015, 3, 3.                        | 4.1  | 27        |
| 52 | Differential Cell Adhesion of Breast Cancer Stem Cells on Biomaterial Substrate with Nanotopographical Cues. Journal of Functional Biomaterials, 2015, 6, 241-258.                                                      | 4.4  | 14        |
| 53 | Actomyosin contractility plays a role in MAP2 expression during nanotopography-directed neuronal differentiation of human embryonic stem cells. Biomaterials, 2015, 47, 20-28.                                          | 11.4 | 59        |
| 54 | Enhanced differentiation of neural progenitor cells into neurons of the mesencephalic dopaminergic subtype on topographical patterns. Biomaterials, 2015, 43, 32-43.                                                    | 11.4 | 54        |

| #  | Article                                                                                                                                                                                                                                     | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | In vitro and ex vivo hemocompatibility of off-the-shelf modified poly(vinyl alcohol) vascular grafts.<br>Acta Biomaterialia, 2015, 25, 97-108.                                                                                              | 8.3  | 65        |
| 56 | Micro- and nano-topography to enhance proliferation and sustain functional markers of donor-derived primary human corneal endothelial cells. Acta Biomaterialia, 2015, 19, 138-148.                                                         | 8.3  | 57        |
| 57 | Sub-100 nm patterning of TiO <sub>2</sub> film for the regulation of endothelial and smooth muscle cell functions. Biomaterials Science, 2014, 2, 1740-1749.                                                                                | 5.4  | 25        |
| 58 | Organic nanoparticles with aggregation-induced emission for tracking bone marrow stromal cells in the rat ischemic stroke model. Chemical Communications, 2014, 50, 15136-15139.                                                            | 4.1  | 22        |
| 59 | Micro- and nanotopography with extracellular matrix coating modulate human corneal endothelial cell behavior. Acta Biomaterialia, 2014, 10, 1975-1984.                                                                                      | 8.3  | 56        |
| 60 | Composite pullulan–dextran polysaccharide scaffold with interfacial polyelectrolyte complexation<br>fibers: A platform with enhanced cell interaction and spatial distribution. Acta Biomaterialia, 2014, 10,<br>4410-4418.                 | 8.3  | 38        |
| 61 | Extending neurites sense the depth of the underlying topography during neuronal differentiation and contact guidance. Biomaterials, 2014, 35, 7750-7761.                                                                                    | 11.4 | 106       |
| 62 | The Synergistic Effect of Nanotopography and Sustained Dual Release of Hydrophobic and Hydrophilic<br>Neurotrophic Factors on Human Mesenchymal Stem Cell Neuronal Lineage Commitment. Tissue<br>Engineering - Part A, 2014, 20, 2151-2161. | 3.1  | 20        |
| 63 | Anisotropic rigidity sensing on grating topography directs human mesenchymal stem cell elongation.<br>Biomechanics and Modeling in Mechanobiology, 2014, 13, 27-39.                                                                         | 2.8  | 45        |
| 64 | Evaluation of hemocompatibility and endothelialization of hybrid poly(vinyl alcohol) (PVA)/gelatin<br>polymer films. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2013, 101,<br>1549-1559.                       | 3.4  | 46        |
| 65 | Substrate topography and size determine the fate of human embryonic stem cells to neuronal or glial<br>lineage. Acta Biomaterialia, 2013, 9, 4535-4545.                                                                                     | 8.3  | 140       |
| 66 | Nanotopography Modulates Mechanotransduction of Stem Cells and Induces Differentiation through<br>Focal Adhesion Kinase. ACS Nano, 2013, 7, 4785-4798.                                                                                      | 14.6 | 352       |
| 67 | Temporal application of topography to increase the rate of neural differentiation from human pluripotent stem cells. Biomaterials, 2013, 34, 382-392.                                                                                       | 11.4 | 64        |
| 68 | Normalized Median Fluorescence: An Alternative Flow Cytometry Analysis Method for Tracking Human<br>Embryonic Stem Cell States During Differentiation. Tissue Engineering - Part C: Methods, 2013, 19,<br>156-165.                          | 2.1  | 36        |
| 69 | High throughput screening to investigate the interaction of stem cells with their extracellular microenvironment. Organogenesis, 2013, 9, 128-142.                                                                                          | 1.2  | 34        |
| 70 | Cultivation of Human Microvascular Endothelial Cells on Topographical Substrates to Mimic the<br>Human Corneal Endothelium. Journal of Functional Biomaterials, 2013, 4, 38-58.                                                             | 4.4  | 5         |
| 71 | Force-dependent cell signaling in stem cell differentiation. Stem Cell Research and Therapy, 2012, 3, 41.                                                                                                                                   | 5.5  | 130       |
| 72 | Functional reconstruction of corneal endothelium using nanotopography for tissue-engineering applications. Acta Biomaterialia, 2012, 8, 2941-2952.                                                                                          | 8.3  | 39        |

| #  | Article                                                                                                                                                                                                                       | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 73 | Microarray with Micro―and Nanoâ€ŧopographies Enables Identification of the Optimal Topography for<br>Directing the Differentiation of Primary Murine Neural Progenitor Cells. Small, 2012, 8, 3050-3061.                      | 10.0 | 110       |
| 74 | The effect of micro and nanotopography on endocytosis in drug and gene delivery systems.<br>Biomaterials, 2011, 32, 9866-9875.                                                                                                | 11.4 | 86        |
| 75 | Human Corneal Keratocyte Response to Micro- and Nano-Gratings on Chitosan and PDMS. Cellular and Molecular Bioengineering, 2011, 4, 399-410.                                                                                  | 2.1  | 27        |
| 76 | A 3D Electroactive Polypyrrole-Collagen Fibrous Scaffold for Tissue Engineering. Polymers, 2011, 3, 527-544.                                                                                                                  | 4.5  | 53        |
| 77 | Nanotopography-induced changes in focal adhesions, cytoskeletal organization, and mechanical properties of human mesenchymal stem cells. Biomaterials, 2010, 31, 1299-1306.                                                   | 11.4 | 618       |
| 78 | Stem Cell Interaction with Topography. Studies in Mechanobiology, Tissue Engineering and Biomaterials, 2010, , 61-87.                                                                                                         | 1.0  | 1         |
| 79 | Nanotopography/Mechanical Induction of Stem-Cell Differentiation. Methods in Cell Biology, 2010, 98, 241-294.                                                                                                                 | 1.1  | 64        |
| 80 | Nano-Patterned Poly-ε-caprolactone with Controlled Release of Retinoic Acid and Nerve Growth<br>Factor for Neuronal Regeneration. IFMBE Proceedings, 2009, , 1348-1351.                                                       | 0.3  | 2         |
| 81 | Amidine surface modification of poly(acrylonitrileâ€ <i>co</i> â€vinyl chloride) reduces platelet adhesion.<br>Journal of Biomedical Materials Research - Part A, 2009, 89A, 780-790.                                         | 4.0  | 9         |
| 82 | Collagen-based fibrous scaffold for spatial organization of encapsulated and seeded human mesenchymal stem cells. Biomaterials, 2009, 30, 1133-1142.                                                                          | 11.4 | 56        |
| 83 | Cell–Substrate Interactions. , 2008, , 666-685.                                                                                                                                                                               |      | 2         |
| 84 | Tissue Compatibility of Interfacial Polyelectrolyte Complexation Fibrous Scaffold: Evaluation of Blood Compatibility and Biocompatibility. Tissue Engineering, 2007, 13, 423-433.                                             | 4.6  | 37        |
| 85 | Synthetic nanostructures inducing differentiation of human mesenchymal stem cells into neuronal<br>lineage. Experimental Cell Research, 2007, 313, 1820-1829.                                                                 | 2.6  | 702       |
| 86 | Enhanced extracellular matrix production and differentiation of human embryonic germ cell<br>derivatives in biodegradable poly(ε-caprolactone-co-ethyl ethylene phosphate) scaffold. Acta<br>Biomaterialia, 2006, 2, 365-376. | 8.3  | 5         |
| 87 | Proliferation and differentiation of human mesenchymal stem cell encapsulated in polyelectrolyte complexation fibrous scaffold. Biomaterials, 2006, 27, 6111-6122.                                                            | 11.4 | 70        |
| 88 | Tissue Compatibility of Interfacial Polyelectrolyte Complexation Fibrous Scaffold: Evaluation of<br>Blood Compatibility and Biocompatibility. Tissue Engineering, 2006, .                                                     | 4.6  | 0         |
| 89 | Nanopattern-induced changes in morphology and motility of smooth muscle cells. Biomaterials, 2005, 26, 5405-5413.                                                                                                             | 11.4 | 592       |
| 90 | Controlled release from fibers of polyelectrolyte complexes. Journal of Controlled Release, 2005, 104, 347-358.                                                                                                               | 9.9  | 106       |

| #  | Article                                                                                                                                                                                                                                         | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91 | Significance of synthetic nanostructures in dictating cellular response. Nanomedicine:<br>Nanotechnology, Biology, and Medicine, 2005, 1, 10-21.                                                                                                | 3.3 | 262       |
| 92 | Proliferation and differentiation of human embryonic germ cell derivatives in bioactive polymeric fibrous scaffold. Journal of Biomaterials Science, Polymer Edition, 2005, 16, 1193-1217.                                                      | 3.5 | 41        |
| 93 | Effects of nanoimprinted patterns in tissue-culture polystyrene on cell behavior. Journal of Vacuum<br>Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics<br>Processing and Phenomena, 2005, 23, 2984. | 1.6 | 98        |
| 94 | Sustained Release of Proteins from Electrospun Biodegradable Fibers. Biomacromolecules, 2005, 6, 2017-2024.                                                                                                                                     | 5.4 | 527       |
| 95 | Encapsulation of biologics in self-assembled fibers as biostructural units for tissue engineering.<br>Journal of Biomedical Materials Research Part B, 2004, 71A, 586-595.                                                                      | 3.1 | 50        |
| 96 | Mechanism of Fiber Formation by Interfacial Polyelectrolyte Complexation. Macromolecules, 2004, 37, 7019-7025.                                                                                                                                  | 4.8 | 74        |