
Suzanne M Moenter

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2304349/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Gonadotropinâ€releasing hormone (GnRH) measurements in pituitary portal blood: A history. Journal of Neuroendocrinology, 2022, 34, e13065.	1.2	6
2	The electrophysiologic properties of gonadotropinâ€releasing hormone neurons. Journal of Neuroendocrinology, 2022, 34, e13073.	1.2	7
3	The role of gonadotropinâ€releasing hormone neurons in polycystic ovary syndrome. Journal of Neuroendocrinology, 2022, 34, e13093.	1.2	13
4	Gonadotropin-Releasing Hormone (GnRH) Neuron Potassium Currents and Excitability in Both Sexes Exhibit Minimal Changes upon Removal of Negative Feedback. ENeuro, 2021, 8, ENEURO.0126-21.2021.	0.9	3
5	Protocol to extract actively translated mRNAs from mouse hypothalamus by translating ribosome affinity purification. STAR Protocols, 2021, 2, 100589.	0.5	Ο
6	A role for glial fibrillary acidic protein (GFAP)-expressing cells in the regulation of gonadotropin-releasing hormone (GnRH) but not arcuate kisspeptin neuron output in male mice. ELife, 2021, 10, .	2.8	12
7	Reciprocal Changes in Voltage-Gated Potassium and Subthreshold Inward Currents Help Maintain Firing Dynamics of AVPV Kisspeptin Neurons during the Estrous Cycle. ENeuro, 2021, 8, ENEURO.0324-21.2021.	0.9	2
8	Prenatal Androgen Treatment Does Not Alter the Firing Activity of Hypothalamic Arcuate Kisspeptin Neurons in Female Mice. ENeuro, 2021, 8, ENEURO.0306-21.2021.	0.9	7
9	Neuroendocrine interactions of the stress and reproductive axes. Frontiers in Neuroendocrinology, 2021, 63, 100928.	2.5	23
10	Central aspects of systemic oestradiol negative―and positiveâ€feedback on the reproductive neuroendocrine system. Journal of Neuroendocrinology, 2020, 32, e12724.	1.2	15
11	Differential Roles of Hypothalamic AVPV and Arcuate Kisspeptin Neurons in Estradiol Feedback Regulation of Female Reproduction. Neuroendocrinology, 2020, 110, 172-184.	1.2	40
12	Ovarian Androgens Maintain High GnRH Neuron Firing Rate in Adult Prenatally-Androgenized Female Mice. Endocrinology, 2020, 161, .	1.4	13
13	Firing patterns of gonadotropin-releasing hormone neurons are sculpted by their biologic state. Royal Society Open Science, 2020, 7, 201040.	1.1	Ο
14	Prenatal Androgenization Alters the Development of GnRH Neuron and Preoptic Area RNA Transcripts in Female Mice. Endocrinology, 2020, 161, .	1.4	5
15	A CRH Receptor Type 1 Agonist Increases GABA Transmission to GnRH Neurons in a Circulating-Estradiol-Dependent Manner. Endocrinology, 2020, 161, .	1.4	10
16	Kisspeptin receptor agonist has therapeutic potential for female reproductive disorders. Journal of Clinical Investigation, 2020, 130, 6739-6753.	3.9	52
17	Chemogenetic Suppression of GnRH Neurons during Pubertal Development Can Alter Adult GnRH Neuron Firing Rate and Reproductive Parameters in Female Mice. ENeuro, 2020, 7, ENEURO.0223-20.2020.	0.9	4
18	Estradiol Enhances the Depolarizing Response to GABA and AMPA Synaptic Conductances in Arcuate Kisspeptin Neurons by Diminishing Voltage-Gated Potassium Currents. Journal of Neuroscience, 2019, 39, 9532-9545.	1.7	13

#	Article	IF	CITATIONS
19	Changes in Both Neuron Intrinsic Properties and Neurotransmission Are Needed to Drive the Increase in GnRH Neuron Firing Rate during Estradiol-Positive Feedback. Journal of Neuroscience, 2019, 39, 2091-2101.	1.7	12
20	Genetic dissection of the different roles of hypothalamic kisspeptin neurons in regulating female reproduction. ELife, 2019, 8, .	2.8	53
21	The 3rd World Conference on Kisspeptin, "Kisspeptin 2017: Brain and Beyond― Unresolved questions, challenges and future directions for the field. Journal of Neuroendocrinology, 2018, 30, e12600.	1.2	12
22	Identification of Genes Enriched in GnRH Neurons by Translating Ribosome Affinity Purification and RNAseq in Mice. Endocrinology, 2018, 159, 1922-1940.	1.4	28
23	Prepubertal Development of GABAergic Transmission to Gonadotropin-Releasing Hormone (GnRH) Neurons and Postsynaptic Response Are Altered by Prenatal Androgenization. Journal of Neuroscience, 2018, 38, 2283-2293.	1.7	53
24	Gonadotropin-Releasing Hormone (GnRH) Neuron Excitability Is Regulated by Estradiol Feedback and Kisspeptin. Journal of Neuroscience, 2018, 38, 1249-1263.	1.7	34
25	GnRH Neurons on LSD: A Year of Rejecting Hypotheses That May Have Made Karl Popper Proud. Endocrinology, 2018, 159, 199-205.	1.4	9
26	Estradiol-Dependent Stimulation and Suppression of Gonadotropin-Releasing Hormone Neuron Firing Activity by Corticotropin-Releasing Hormone in Female Mice. Endocrinology, 2018, 159, 414-425.	1.4	31
27	Glutamatergic Transmission to Hypothalamic Kisspeptin Neurons Is Differentially Regulated by Estradiol through Estrogen Receptor α in Adult Female Mice. Journal of Neuroscience, 2018, 38, 1061-1072.	1.7	59
28	Changes in GABAergic Transmission to and Intrinsic Excitability of Gonadotropin-Releasing Hormone (GnRH) Neurons during the Estrous Cycle in Mice. ENeuro, 2018, 5, ENEURO.0171-18.2018.	0.9	20
29	Exposure to Acute Psychosocial Stress Disrupts the Luteinizing Hormone Surge Independent of Estrous Cycle Alterations in Female Mice. Endocrinology, 2017, 158, 2593-2602.	1.4	46
30	GnRH Neuron Activity and Pituitary Response in Estradiol-Induced vs Proestrous Luteinizing Hormone Surges in Female Mice. Endocrinology, 2017, 158, 356-366.	1.4	32
31	Prepubertal Development of Gonadotropin-Releasing Hormone Neuron Activity Is Altered by Sex, Age, and Prenatal Androgen Exposure. Endocrinology, 2017, 158, 3943-3953.	1.4	32
32	Long-Term Recordings of Arcuate Nucleus Kisspeptin Neurons Reveal Patterned Activity That Is Modulated by Gonadal Steroids in Male Mice. Endocrinology, 2017, 158, 3553-3564.	1.4	34
33	Excitability and Burst Generation of AVPV Kisspeptin Neurons Are Regulated by the Estrous Cycle Via Multiple Conductances Modulated by Estradiol Action. ENeuro, 2016, 3, ENEURO.0094-16.2016.	0.9	45
34	A unified model for two modes of bursting in GnRH neurons. Journal of Computational Neuroscience, 2016, 40, 297-315.	0.6	17
35	Both Estrogen and Androgen Modify the Response to Activation of Neurokinin-3 and κ-Opioid Receptors in Arcuate Kisspeptin Neurons From Male Mice. Endocrinology, 2016, 157, 752-763.	1.4	40
36	ERα in Tac2 Neurons Regulates Puberty Onset in Female Mice. Endocrinology, 2016, 157, 1555-1565.	1.4	36

SUZANNE M MOENTER

#	Article	IF	CITATIONS
37	Leap of Faith: Does Serum Luteinizing Hormone Always Accurately Reflect Central Reproductive Neuroendocrine Activity?. Neuroendocrinology, 2015, 102, 256-266.	1.2	22
38	Differential Regulation of GnRH Secretion in the Preoptic Area (POA) and the Median Eminence (ME) in Male Mice. Endocrinology, 2015, 156, 231-241.	1.4	50
39	Voluntary Exercise Improves Estrous Cyclicity in Prenatally Androgenized Female Mice Despite Programming Decreased Voluntary Exercise: Implications for Polycystic Ovary Syndrome (PCOS). Endocrinology, 2015, 156, 4618-4628.	1.4	12
40	GABAergic Transmission to Kisspeptin Neurons Is Differentially Regulated by Time of Day and Estradiol in Female Mice. Journal of Neuroscience, 2014, 34, 16296-16308.	1.7	49
41	Development of Gonadotropin-Releasing Hormone Secretion and Pituitary Response. Journal of Neuroscience, 2014, 34, 15060-15069.	1.7	73
42	Reproductive neuroendocrine dysfunction in polycystic ovary syndrome: Insight from animal models. Frontiers in Neuroendocrinology, 2014, 35, 494-511.	2.5	47
43	Regulation of Arcuate Neurons Coexpressing Kisspeptin, Neurokinin B, and Dynorphin by Modulators of Neurokinin 3 and κ-Opioid Receptors in Adult Male Mice. Endocrinology, 2013, 154, 2761-2771.	1.4	122
44	Activation of Neurokinin 3 Receptors Stimulates GnRH Release in a Location-Dependent but Kisspeptin-Independent Manner in Adult Mice. Endocrinology, 2013, 154, 3984-3989.	1.4	58
45	Fast Scan Cyclic Voltammetry as a Novel Method for Detection of Real-Time Gonadotropin-Releasing Hormone Release in Mouse Brain Slices. Journal of Neuroscience, 2012, 32, 14664-14669.	1.7	51
46	Endocannabinoids and prostaglandins both contribute to GnRH neuron-GABAergic afferent local feedback circuits. Journal of Neurophysiology, 2011, 106, 3073-3081.	0.9	36
47	Prenatal Androgenization of Female Mice Programs an Increase in Firing Activity of Gonadotropin-Releasing Hormone (GnRH) Neurons That Is Reversed by Metformin Treatment in Adulthood. Endocrinology, 2011, 152, 618-628.	1.4	71
48	Scene of the Crime: Where Is GnRH Released, and What Might This Tell Us?. Endocrinology, 2011, 152, 4014-4015.	1.4	0
49	Voltage-Gated Potassium Currents Are Targets of Diurnal Changes in Estradiol Feedback Regulation and Kisspeptin Action on Conadotropin-Releasing Hormone Neurons in Mice1. Biology of Reproduction, 2011, 85, 987-995.	1.2	33
50	Identified GnRH neuron electrophysiology: A decade of study. Brain Research, 2010, 1364, 10-24.	1.1	60
51	Diurnal In Vivo and Rapid In Vitro Effects of Estradiol on Voltage-Gated Calcium Channels in Gonadotropin-Releasing Hormone Neurons. Journal of Neuroscience, 2010, 30, 3912-3923.	1.7	79
52	Prenatal androgen exposure programs metabolic dysfunction in female mice. Journal of Endocrinology, 2010, 207, 213-223.	1.2	143
53	Hyperpolarization-Activated Currents in Gonadotropin-Releasing Hormone (GnRH) Neurons Contribute to Intrinsic Excitability and Are Regulated by Gonadal Steroid Feedback. Journal of Neuroscience, 2010, 30, 13373-13383.	1.7	45
54	The Neurobiology of Preovulatory and Estradiol-Induced Gonadotropin-Releasing Hormone Surges. Endocrine Reviews, 2010, 31, 544-577.	8.9	244

#	Article	IF	CITATIONS
55	Retrograde Endocannabinoid Signaling Reduces GABAergic Synaptic Transmission to Gonadotropin-Releasing Hormone Neurons. Endocrinology, 2010, 151, 5818-5829.	1.4	113
56	Kisspeptin Increases Î ³ -Aminobutyric Acidergic and Glutamatergic Transmission Directly to Gonadotropin-Releasing Hormone Neurons in an Estradiol-Dependent Manner. Endocrinology, 2010, 151, 291-300.	1.4	82
57	GABAergic Transmission to Gonadotropin-Releasing Hormone (GnRH) Neurons Is Regulated by GnRH in a Concentration-Dependent Manner Engaging Multiple Signaling Pathways. Journal of Neuroscience, 2009, 29, 9809-9818.	1.7	36
58	Estradiol Suppresses Glutamatergic Transmission to Gonadotropin-Releasing Hormone Neurons in a Model of Negative Feedback in Mice1. Biology of Reproduction, 2009, 80, 1128-1135.	1.2	51
59	Classical Estrogen Receptor α Signaling Mediates Negative and Positive Feedback on Gonadotropin-Releasing Hormone Neuron Firing. Endocrinology, 2008, 149, 5328-5334.	1.4	72
60	Kisspeptin Acts Directly and Indirectly to Increase Gonadotropin-Releasing Hormone Neuron Activity and Its Effects Are Modulated by Estradiol. Endocrinology, 2008, 149, 1979-1986.	1.4	299
61	Vasoactive Intestinal Polypeptide Can Excite Gonadotropin-Releasing Hormone Neurons in a Manner Dependent on Estradiol and Gated by Time of Day. Endocrinology, 2008, 149, 3130-3136.	1.4	85
62	The Gonadotropin-Releasing Hormone (GnRH) Neuronal Population Is Normal in Size and Distribution in GnRH-Deficient and GnRH Receptor-Mutant Hypogonadal Mice. Endocrinology, 2008, 149, 4596-4604.	1.4	33
63	Estradiol Induces Diurnal Shifts in GABA Transmission to Gonadotropin-Releasing Hormone Neurons to Provide a Neural Signal for Ovulation. Journal of Neuroscience, 2007, 27, 1913-1921.	1.7	115
64	Androgens Increase Gonadotropin-Releasing Hormone Neuron Firing Activity in Females and Interfere with Progesterone Negative Feedback. Endocrinology, 2006, 147, 1474-1479.	1.4	102
65	Effect of Steroid Milieu on Gonadotropin-Releasing Hormone-1 Neuron Firing Pattern and Luteinizing Hormone Levels in Male Mice1. Biology of Reproduction, 2006, 74, 931-937.	1.2	42
66	Physiologic Regulation of a Tetrodotoxin-Sensitive Sodium Influx That Mediates a Slow Afterdepolarization Potential in Gonadotropin-Releasing Hormone Neurons: Possible Implications for the Central Regulation of Fertility. Journal of Neuroscience, 2006, 26, 11961-11973.	1.7	57
67	Diurnal and estradiol-dependent changes in gonadotropin-releasing hormone neuron firing activity. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 15682-15687.	3.3	186
68	Endogenous Î ³ -Aminobutyric Acid Can Excite Gonadotropin-Releasing Hormone Neurons. Endocrinology, 2005, 146, 5374-5379.	1.4	124
69	Endogenous Activation of Metabotropic Glutamate Receptors Modulates GABAergic Transmission to Gonadotropin-Releasing Hormone Neurons and Alters Their Firing Rate: A Possible Local Feedback Circuit. Journal of Neuroscience, 2005, 25, 5740-5749.	1.7	87
70	GABAergic Integration of Progesterone and Androgen Feedback to Gonadotropin-Releasing Hormone Neurons1. Biology of Reproduction, 2005, 72, 33-41.	1.2	87
71	γ-Aminobutyric Acid Neurons Integrate and Rapidly Transmit Permissive and Inhibitory Metabolic Cues to Gonadotropin-Releasing Hormone Neurons. Endocrinology, 2004, 145, 1194-1202.	1.4	83
72	Prenatal androgens alter GABAergic drive to gonadotropin-releasing hormone neurons: Implications for a common fertility disorder. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 7129-7134.	3.3	253

SUZANNE M MOENTER

#	Article	IF	CITATIONS
73	A targeted extracellular approach for recording long-term firing patterns of excitable cells: a practical guide. Biological Procedures Online, 2003, 5, 53-62.	1.4	88
74	Mechanisms underlying episodic gonadotropin-releasing hormone secretion. Frontiers in Neuroendocrinology, 2003, 24, 79-93.	2.5	135
75	Gonadotropin-Releasing Hormone Neurons Generate Interacting Rhythms in Multiple Time Domains. Endocrinology, 2003, 144, 823-831.	1.4	73
76	Neurosteroids Alter γ-Aminobutyric Acid Postsynaptic Currents in Gonadotropin-Releasing Hormone Neurons: A Possible Mechanism for Direct Steroidal Control. Endocrinology, 2003, 144, 4366-4375.	1.4	76
77	Metabolic Regulation of Fertility through Presynaptic and Postsynaptic Signaling to Gonadotropin-Releasing Hormone Neurons. Journal of Neuroscience, 2003, 23, 8578-8585.	1.7	86
78	Estradiol-Sensitive Afferents Modulate Long-Term Episodic Firing Patterns of GnRH Neurons. Endocrinology, 2002, 143, 2284-2292.	1.4	110
79	Estradiol Feedback Alters Potassium Currents and Firing Properties of Gonadotropin-Releasing Hormone Neurons. Molecular Endocrinology, 2002, 16, 2255-2265.	3.7	109
80	Activation of A-Type γ-Aminobutyric Acid Receptors Excites Gonadotropin-Releasing Hormone Neurons. Molecular Endocrinology, 2002, 16, 2872-2891.	3.7	268
81	Genetic Targeting of Green Fluorescent Protein to Gonadotropin-Releasing Hormone Neurons: Characterization of Whole-Cell Electrophysiological Properties and Morphology1. Endocrinology, 2000, 141, 412-419.	1.4	255
82	Whole-Cell Recordings from Preoptic/Hypothalamic Slices Reveal Burst Firing in Gonadotropin-Releasing Hormone Neurons Identified with Green Fluorescent Protein in Transgenic Mice*. Endocrinology, 2000, 141, 3731-3736.	1.4	95
83	Gonadotropin-Releasing Hormone Requirements for Ovulation1. Biology of Reproduction, 1997, 56, 303-309.	1.2	132
84	Photoperiodic Synchronization of a Circannual Reproductive Rhythm in Sheep: Identification of Season-Specific Time Cues1. Biology of Reproduction, 1994, 50, 965-976.	1.2	129
85	Seasonal Changes in Gonadotropin-Releasing Hormone Secretion in the Ewe: Alteration in Response to the Negative Feedback Action of Estradiol1. Biology of Reproduction, 1993, 49, 1377-1383.	1.2	162
86	Seasonal Changes of Gonadotropin-Releasing Hormone Secretion in the Ewe1. Biology of Reproduction, 1992, 46, 1130-1135.	1.2	113
87	Pattern of Gonadotropin-Releasing Hormone (GnRH) Secretion Leading up to Ovulation in the Ewe: Existence of a Preovulatory GnRH Surge [*] . Endocrinology, 1991, 129, 1175-1182.	1.4	319
88	Role of the Thyroid Gland in Seasonal Reproduction. III. Thyroidectomy Blocks Seasonal Suppression of Gonadotropin-Releasing Hormone Secretion in Sheep*. Endocrinology, 1991, 129, 1635-1643.	1.4	86
89	The Estradiol-Induced Surge of Gonadotropin-Releasing Hormone in the Ewe*. Endocrinology, 1990, 127, 1375-1384.	1.4	287
90	Cycles of Transcription and Translation Do Not Comprise the Gonadotropin-Releasing Hormone Pulse Generator in GT1 Cells. , 0, .		12