
Behnam Badie

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2304281/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Regression of Glioblastoma after Chimeric Antigen Receptor T-Cell Therapy. New England Journal of Medicine, 2016, 375, 2561-2569.	27.0	1,326
2	Bioactivity and Safety of IL13Rα2-Redirected Chimeric Antigen Receptor CD8+ T Cells in Patients with Recurrent Glioblastoma. Clinical Cancer Research, 2015, 21, 4062-4072.	7.0	573
3	Microglia function in brain tumors. Journal of Neuroscience Research, 2005, 81, 447-455.	2.9	299
4	Reporter gene imaging of targeted T cell immunotherapy in recurrent glioma. Science Translational Medicine, 2017, 9, .	12.4	263
5	Optimization of IL13Rα2-Targeted Chimeric Antigen Receptor T Cells for Improved Anti-tumor Efficacy against Glioblastoma. Molecular Therapy, 2018, 26, 31-44.	8.2	217
6	Flow Cytometric Characterization of Tumor-associated Macrophages in Experimental Gliomas. Neurosurgery, 2000, 46, 957-962.	1.1	203
7	Neural Stem Cell–Mediated Enzyme/Prodrug Therapy for Glioma: Preclinical Studies. Science Translational Medicine, 2013, 5, 184ra59.	12.4	194
8	Stat3 inhibition activates tumor macrophages and abrogates glioma growth in mice. Glia, 2009, 57, 1458-1467.	4.9	165
9	Flow Cytometric Characterization of Tumor-associated Macrophages in Experimental Gliomas. Neurosurgery, 2000, 46, 957-962.	1.1	162
10	Role of microglia in glioma biology. Microscopy Research and Technique, 2001, 54, 106-113.	2.2	161
11	Chimeric Antigen Receptors T Cell Therapy in Solid Tumor: Challenges and Clinical Applications. Frontiers in Immunology, 2017, 8, 1850.	4.8	161
12	Chlorotoxin-directed CAR T cells for specific and effective targeting of glioblastoma. Science Translational Medicine, 2020, 12, .	12.4	150
13	Internalization of MWCNTs by microglia: Possible application in immunotherapy of brain tumors. NeuroImage, 2007, 37, S9-S17.	4.2	142
14	Phase II multicenter study of gene-mediated cytotoxic immunotherapy as adjuvant to surgical resection for newly diagnosed malignant glioma. Neuro-Oncology, 2016, 18, 1137-1145.	1.2	126
15	Glioma IL13Rα2 Is Associated with Mesenchymal Signature Gene Expression and Poor Patient Prognosis. PLoS ONE, 2013, 8, e77769.	2.5	126
16	Microglia and Macrophages in Malignant Gliomas: Recent Discoveries and Implications for Promising Therapies. Clinical and Developmental Immunology, 2013, 2013, 1-5.	3.3	121
17	Neural Stem Cell–Based Anticancer Gene Therapy: A First-in-Human Study in Recurrent High-Grade Glioma Patients. Clinical Cancer Research, 2017, 23, 2951-2960.	7.0	121
18	Impaired capacity for upregulation of MHC class II in tumor-associated microglia. Glia, 2005, 51, 279-285.	4.9	120

Behnam Badie

#	Article	IF	CITATIONS
19	RAGE Expression in Tumor-Associated Macrophages Promotes Angiogenesis in Glioma. Cancer Research, 2014, 74, 7285-7297.	0.9	119
20	Expression of Fas ligand by microglia: possible role in glioma immune evasion. Journal of Neuroimmunology, 2001, 120, 19-24.	2.3	105
21	In Vitro Modulation of Microglia Motility by Glioma Cells Is Mediated by Hepatocyte Growth Factor/Scatter Factor. Neurosurgery, 1999, 44, 1077-1082.	1.1	97
22	S100B Promotes Glioma Growth through Chemoattraction of Myeloid-Derived Macrophages. Clinical Cancer Research, 2013, 19, 3764-3775.	7.0	86
23	IFNγ Is Critical for CAR T Cell–Mediated Myeloid Activation and Induction of Endogenous Immunity. Cancer Discovery, 2021, 11, 2248-2265.	9.4	86
24	Selective uptake of multi-walled carbon nanotubes by tumor macrophages in a murine glioma model. Journal of Neuroimmunology, 2009, 208, 3-9.	2.3	85
25	CRISPR Screening of CAR T Cells and Cancer Stem Cells Reveals Critical Dependencies for Cell-Based Therapies. Cancer Discovery, 2021, 11, 1192-1211.	9.4	78
26	S100B attenuates microglia activation in gliomas: Possible role of STAT3 pathway. Glia, 2011, 59, 486-498.	4.9	75
27	Downregulation of TLX induces TET3 expression and inhibits glioblastoma stem cell self-renewal and tumorigenesis. Nature Communications, 2016, 7, 10637.	12.8	67
28	Increased expression of stress inducible protein 1 in glioma-associated microglia/macrophages. Journal of Neuroimmunology, 2014, 274, 71-77.	2.3	64
29	Targeting PUS7 suppresses tRNA pseudouridylation and glioblastoma tumorigenesis. Nature Cancer, 2021, 2, 932-949.	13.2	64
30	TLR9 Is Critical for Glioma Stem Cell Maintenance and Targeting. Cancer Research, 2014, 74, 5218-5228.	0.9	60
31	Human brain metastatic stroma attracts breast cancer cells via chemokines CXCL16 and CXCL12. Npj Breast Cancer, 2017, 3, 6.	5.2	56
32	Microglia cyclooxygenase-2 activity in experimental gliomas: possible role in cerebral edema formation. Clinical Cancer Research, 2003, 9, 872-7.	7.0	50
33	Regulation of IL-10 expression by upstream stimulating factor (USF-1) in glioma-associated microgliaâ~†. Journal of Neuroimmunology, 2007, 184, 188-197.	2.3	39
34	S100B suppression alters polarization of infiltrating myeloid-derived cells in gliomas and inhibits tumor growth. Cancer Letters, 2018, 439, 91-100.	7.2	37
35	Systemic Anti–PD-1 Immunotherapy Results in PD-1 Blockade on T Cells in the Cerebrospinal Fluid. JAMA Oncology, 2020, 6, 1947.	7.1	28
36	Chimeric antigen receptor T-cell therapy for glioblastoma. Translational Research, 2017, 187, 93-102.	5.0	27

Behnam Badie

#	Article	IF	CITATIONS
37	Characterization of patient-derived tumor xenografts (PDXs) as models for estrogen receptor positive (ER+HER2â^ and ER+HER2+) breast cancers. Journal of Steroid Biochemistry and Molecular Biology, 2017, 170, 65-74.	2.5	26
38	Monocyte-Derived Cells of the Brain and Malignant Gliomas: The Double Face of Janus. World Neurosurgery, 2014, 82, 1171-1186.	1.3	24
39	Chimeric Antigen Receptor T-Cell Therapy: Updates in Clioblastoma Treatment. Neurosurgery, 2021, 88, 1056-1064.	1.1	14
40	Local and Systemic Immune Dysregulation Alters Glioma Growth in Hyperglycemic Mice. Clinical Cancer Research, 2020, 26, 2740-2753.	7.0	9
41	Role of RAGE and Its Ligands on Inflammatory Responses to Brain Tumors. Frontiers in Cellular Neuroscience, 2021, 15, 770472.	3.7	8
42	Feasibility of intracerebrally administering multiple doses of genetically modified neural stem cells to locally produce chemotherapy in glioma patients. Cancer Gene Therapy, 2021, 28, 294-306.	4.6	7
43	Chimeric Antigen Receptor (CAR) T Cell Therapy for Glioblastoma. NeuroMolecular Medicine, 2022, 24, 35-40.	3.4	6
44	Early Changes in Tumor Perfusion from T1-Weighted Dynamic Contrast-Enhanced MRI following Neural Stem Cell-Mediated Therapy of Recurrent High-Grade Glioma Correlate with Overall Survival. Stem Cells International, 2018, 2018, 1-9.	2.5	5
45	Dynamically Programmable Magnetic Fields for Controlled Movement of Cells Loaded with Iron Oxide Nanoparticles. ACS Applied Bio Materials, 2020, 3, 4139-4147.	4.6	5
46	RAGE Inhibitors as Alternatives to Dexamethasone for Managing Cerebral Edema Following Brain Tumor Surgery. Neurotherapeutics, 2022, 19, 635-648.	4.4	4
47	A phase 1 study to evaluate chimeric antigen receptor (CAR) T cells incorporating a chlorotoxin tumor-targeting domain for patients with MMP2+ Recurrent or progressive glioblastoma (NCT04214392) Journal of Clinical Oncology, 2021, 39, TPS2662-TPS2662.	1.6	3
48	Spatial organization of heterogeneous immunotherapy target antigen expression in high-grade glioma. Neoplasia, 2022, 30, 100801.	5.3	2
49	Detection of MGMT promoter methylation in malignant gliomas Journal of Clinical Oncology, 2016, 34, e23131-e23131.	1.6	1
50	Abstract CT541A: Oncolytic viral reshaping of the tumor microenvironment to promote CAR T cell therapy for glioblastoma. Cancer Research, 2022, 82, CT541A-CT541A.	0.9	1
51	A phase I/IIa, open-label, multicenter, non-randomized clinical trial to assess the safety and efficacy of CYNK-001 in combination with recombinant human interleukin 2 in adults with recurrent resection eligible IDH1 wild-type glioblastoma (GBM) Journal of Clinical Oncology, 2022, 40, TPS2080-TPS2080.	1.6	1
52	A brainstem mass of Müllerian type Epithelial Origin without any primary cancer source. Journal of Clinical Neuroscience, 2019, 59, 325-332.	1.5	0
53	Explainable prediction of survival using clinical, molecular, and radiomic profiles in recurrent high-grade glioma patients treated with CAR T-cell therapy Journal of Clinical Oncology, 2021, 39, 104-104.	1.6	0
54	CTIM-29. CLINICAL EVALUATION OF CHLOROTOXIN-DIRECTED CAR T CELLS FOR PATIENTS WITH RECURRENT GLIOBLASTOMA. Neuro-Oncology, 2021, 23, vi57-vi57.	1.2	0