List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2304279/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Biochar for Improving Soil Biological Properties and Mitigating Salt Stress in Plants on Salt-affected Soils. Communications in Soil Science and Plant Analysis, 2022, 53, 140-152.	1.4	21
2	The use of rhizobium and mycorrhizae in soil containing rhizobiophage to improve growth and nodulation of cowpea. Scientia Agricola, 2022, 79, .	1.2	2
3	The Integrated Effect of Microbial Inoculants and Biochar Types on Soil Biological Properties, and Plant Growth of Lettuce (Lactuca sativa L.). Plants, 2022, 11, 423.	3.5	11
4	Diversity and Plant Growth-Promoting Ability of Endophytic, Halotolerant Bacteria Associated with Tetragonia tetragonioides (Pall.) Kuntze. Plants, 2022, 11, 49.	3.5	13
5	Interactive Effects of Biochar, Nitrogen, and Phosphorous on the Symbiotic Performance, Growth, and Nutrient Uptake of Soybean (Glycine max L.). Agronomy, 2022, 12, 27.	3.0	4
6	The diversity of bacterial endophytes from Iris pseudacorus L. and their plant beneficial traits. Current Research in Microbial Sciences, 2022, 3, 100133.	2.3	0
7	A Case Study in Desertified Area: Soybean Growth Responses to Soil Structure and Biochar Addition Integrating Ridge Regression Models. Agronomy, 2022, 12, 1341.	3.0	0
8	A Novel Bacillus safensis-Based Formulation along with Mycorrhiza Inoculation for Controlling Alternaria alternata and Simultaneously Improving Growth, Nutrient Uptake, and Steviol Glycosides in Stevia rebaudiana under Field Conditions. Plants, 2022, 11, 1857.	3.5	3
9	Towards policies that capture the expected value of biomolecular diversity for drug discovery, human health, and well-being. Biologia Futura, 2021, 72, 119-125.	1.4	0
10	Secondary metabolites produced by endophytic <i>Pantoea ananatis</i> derived from roots of <i>Baccharoides anthelmintica</i> and their effect on melanin synthesis in murine B16 cells. Natural Product Research, 2021, 35, 796-801.	1.8	20
11	Onshore soil microbes and endophytes respond differently to geochemical and mineralogical changes in the Aral Sea. Science of the Total Environment, 2021, 765, 142675.	8.0	9
12	Antimicrobial activities of herbal plants from Uzbekistan against human pathogenic microbes. Environmental Sustainability, 2021, 4, 87-94.	2.8	8
13	Diversity and biological activity of culturable endophytic bacteria associated with marigold (<i>Calendula officinalis</i> L.). AIMS Microbiology, 2021, 7, 336-353.	2.2	11
14	Editorial: Salt Tolerant Rhizobacteria: For Better Productivity and Remediation of Saline Soils. Frontiers in Microbiology, 2021, 12, 660075.	3.5	8
15	Valorization of bio-waste material: future dimensions for path towards sustainability. Environmental Sustainability, 2021, 4, 199-200.	2.8	5
16	Biochar mediated control of soil-borne phytopathogens. Environmental Sustainability, 2021, 4, 329-334.	2.8	8
17	Soybean Nodulation Response to Cropping Interval and Inoculation in European Cropping Systems. Frontiers in Plant Science, 2021, 12, 638452.	3.6	16
18	Biochar mitigates effects of pesticides on soil biological activities. Environmental Sustainability, 2021, 4, 335-342.	2.8	23

#	Article	IF	CITATIONS
19	Diversity and Biocontrol Potential of Cultivable Endophytic Bacteria Associated with Halophytes from the West Aral Sea Basin. Microorganisms, 2021, 9, 1448.	3.6	14
20	Diversity of cultivable endophytic bacteria associated with halophytes in Xinjiang of China and their plant beneficial traits. Journal of Arid Land, 2021, 13, 790-800.	2.3	5
21	COVID-19 pandemic: aggressive research, vaccination, testing, and environmental sustainability are the way forward. Environmental Sustainability, 2021, 4, 443-445.	2.8	3
22	Explorative assessment of coronavirus-like short sequences from host-associated and environmental metagenomes. Science of the Total Environment, 2021, 793, 148494.	8.0	0
23	Microbial Stress Response to Heavy Metals. Microorganisms for Sustainability, 2021, , 249-272.	0.7	0
24	Extremophiles in Saline Environment: Potential for Sustainable Agriculture. Microorganisms for Sustainability, 2021, , 1-16.	0.7	0
25	Extreme Thermophilic Microorganisms as an Unique Source of Inspiration for Next Generation Biotechnological Products. Microorganisms for Sustainability, 2021, , 207-224.	0.7	0
26	Biodiversity, Ecological, and Commercial Importance of Psychrophilic Microorganisms. Microorganisms for Sustainability, 2021, , 225-247.	0.7	0
27	Biochar Amendments Improve Licorice (Glycyrrhiza uralensis Fisch.) Growth and Nutrient Uptake under Salt Stress. Plants, 2021, 10, 2135.	3.5	22
28	Characterization of cadmium-tolerant endophytic fungi isolated from soybean (Glycine max) and barley (Hordeum vulgare). Heliyon, 2021, 7, e08240.	3.2	6
29	Effect of plant growth promotion fungi on agricultural crops. BIO Web of Conferences, 2021, 40, 01004.	0.2	0
30	Enhanced Soybean Productivity by Inoculation With Indigenous Bradyrhizobium Strains in Agroecological Conditions of Northeast Germany. Frontiers in Plant Science, 2021, 12, 707080.	3.6	8
31	Identification and characterization of endophytic bacteria isolated from root nodules of lentil (Lens) Tj ETQq1 1 ().784314 r 0.3	gBT /Overloc
32	Novel Bioformulations Developed from Pseudomonas putida BSP9 and Its Biosurfactant for Growth Promotion of Brassica juncea (L.). Plants, 2020, 9, 1349.	3.5	19
33	Endophytic bacteria associated with halophyte Seidlitzia rosmarinus Ehrenb. ex Boiss. from saline soil of Uzbekistan and their plant beneficial traits. Journal of Arid Land, 2020, 12, 730-740.	2.3	26
34	Plant growth response of broad bean (Vicia faba L.) to biochar amendment of loamy sand soil under irrigated and drought conditions. Environmental Sustainability, 2020, 3, 319-324.	2.8	16
35	Plant microbiome: source for biologically active compounds. , 2020, , 1-9.		4
36	Agroecological principles and elements and their implications for transitioning to sustainable food systems. A review. Agronomy for Sustainable Development, 2020, 40, 1.	5.3	275

#	Article	IF	CITATIONS
37	Bacterial endophytes from horseradish (Armoracia rusticana G. Gaertn.,B.Mey.&Scherb.) with antimicrobial efficacy against pathogens. Plant, Soil and Environment, 2020, 66, 309-316.	2.2	13
38	Bioremoval of methylene blue from aqueous solutions by Syringa vulgaris L. hull biomass. Environmental Sustainability, 2020, 3, 303-312.	2.8	7
39	Response of Soybean to Hydrochar-Based Rhizobium Inoculation in Loamy Sandy Soil. Microorganisms, 2020, 8, 1674.	3.6	10
40	Integration of molecular tools in microbial phosphate solubilization research in agriculture perspective. World Journal of Microbiology and Biotechnology, 2020, 36, 93.	3.6	31
41	Diversity and Antimicrobial Potential of Cultivable Endophytic Actinobacteria Associated With the Medicinal Plant Thymus roseus. Frontiers in Microbiology, 2020, 11, 191.	3.5	42
42	Characterization of Rhizobia for the Improvement of Soybean Cultivation at Cold Conditions in Central Europe. Microbes and Environments, 2020, 35, n/a.	1.6	33
43	Endophytic Bacteria Associated with Medicinal Plant Vernonia anthelmintica: Diversity and Characterization. Current Microbiology, 2020, 77, 1457-1465.	2.2	26
44	The Effect of Biochars and Endophytic Bacteria on Growth and Root Rot Disease Incidence of Fusarium Infested Narrow-Leafed Lupin (Lupinus angustifolius L.). Microorganisms, 2020, 8, 496.	3.6	26
45	Endophytes from Medicinal Plants as Biocontrol Agents against Fusarium Caused Diseases. MikrobiolohichnyÄ-Zhurnal, 2020, 82, 41-52.	0.6	2
46	Effect of Biochar and Irrigation on Soybean-Rhizobium Symbiotic Performance and Soil Enzymatic Activity in Field Rhizosphere. Agronomy, 2019, 9, 626.	3.0	36
47	A glimpse of the prokaryotic diversity of the Large Aral Sea reveals novel extremophilic bacterial and archaeal groups. MicrobiologyOpen, 2019, 8, e00850.	3.0	12
48	Editorial: Thermophilic and Halophilic Extremophiles in Eurasian Environments. Frontiers in Microbiology, 2019, 10, 379.	3.5	1
49	Diversity, community distribution and growth promotion activities of endophytes associated with halophyte Lycium ruthenicum Murr. 3 Biotech, 2019, 9, 144.	2.2	22
50	Phytochemical Constituents and Pharmacological Effects of Licorice: A Review. , 2019, , 1-21.		27
51	Salt-Tolerant Plant Growth Promoting Rhizobacteria for Enhancing Crop Productivity of Saline Soils. Frontiers in Microbiology, 2019, 10, 2791.	3.5	312
52	Soil Amendment With Different Maize Biochars Improves Chickpea Growth Under Different Moisture Levels by Improving Symbiotic Performance With Mesorhizobium ciceri and Soil Biochemical Properties to Varying Degrees. Frontiers in Microbiology, 2019, 10, 2423.	3.5	33
53	Effect of Biochar and Irrigation on the Interrelationships among Soybean Growth, Root Nodulation, Plant P Uptake, and Soil Nutrients in a Sandy Field. Sustainability, 2019, 11, 6542.	3.2	21
54	Role of calcium in AMF-mediated alleviation of the adverse impacts of cadmium stress in Bassia indica [Wight] A.J. Scott. Saudi Journal of Biological Sciences, 2019, 26, 828-838.	3.8	31

#	Article	IF	CITATIONS
55	Comparing symbiotic performance and physiological responses of two soybean cultivars to arbuscular mycorrhizal fungi under salt stress. Saudi Journal of Biological Sciences, 2019, 26, 38-48.	3.8	53
56	Antibacterial, Antifungal, and Antiviral Properties of Medical Plants. Microorganisms for Sustainability, 2019, , 51-65.	0.7	2
57	Croceibacterium gen. nov., with description of Croceibacterium ferulae sp. nov., an endophytic bacterium isolated from Ferula sinkiangensis K. M. Shen and reclassification of Porphyrobacter mercurialis as Croceibacterium mercuriale comb. nov International Journal of Systematic and Evolutionary Microbiology. 2019. 69. 2547-2554.	1.7	18
58	Cadmium Stress Tolerance in Plants and Role of Beneficial Soil Microorganisms. Microorganisms for Sustainability, 2019, , 213-234.	0.7	2
59	Salicylic Acid (SA) Induced Alterations in Growth, Biochemical Attributes and Antioxidant Enzyme Activity in Faba Bean (Vicia faba L.) Seedlings under NaCl Toxicity. Russian Journal of Plant Physiology, 2018, 65, 104-114.	1.1	53
60	Plant Hormones as Key Regulators in Plant-Microbe Interactions Under Salt Stress. Microorganisms for Sustainability, 2018, , 165-182.	0.7	9
61	Plant Microbiome: Stress Response. Microorganisms for Sustainability, 2018, , .	0.7	7
62	Arbuscular Mycorrhizal Fungi and Plant Stress Tolerance. Microorganisms for Sustainability, 2018, , 81-103.	0.7	10
63	Endophytic bacterium <i>Bacillus subtilis</i> (BERA 71) improves salt tolerance in chickpea plants by regulating the plant defense mechanisms. Journal of Plant Interactions, 2018, 13, 37-44.	2.1	164
64	Arbuscular mycorrhizal fungi regulate the oxidative system, hormones and ionic equilibrium to trigger salt stress tolerance in Cucumis sativus L Saudi Journal of Biological Sciences, 2018, 25, 1102-1114.	3.8	201
65	Allelopathic effects of the aqueous extract of Rhazya stricta on growth and metabolism of Salsola villosa. Plant Biosystems, 2018, 152, 1263-1273.	1.6	15
66	Regulatory roles of 24-epibrassinolide in tolerance of <i>Acacia gerrardii</i> Benth to salt stress. Bioengineered, 2018, 9, 61-71.	3.2	21
67	Modification of Osmolytes and Antioxidant Enzymes by 24-Epibrassinolide in Chickpea Seedlings Under Mercury (Hg) Toxicity. Journal of Plant Growth Regulation, 2018, 37, 309-322.	5.1	89
68	Medicinal Plants of Uzbekistan and Their Traditional Uses. , 2018, , 211-237.		9
69	Desert Truffles in Saudi Arabia: Diversity, Ecology, and Conservation. Soil Biology, 2018, , 353-369.	0.8	Ο
70	Extremophiles in Eurasian Ecosystems: Ecology, Diversity, and Applications. Microorganisms for Sustainability, 2018, , .	0.7	9
71	Soil Salinity and Microbes: Diversity, Ecology, and Biotechnological Potential. Microorganisms for Sustainability, 2018, , 317-332.	0.7	1
72	Medicinal plants with phytotoxic activity harbour endophytic bacteria with plant growth inhibitory properties. Environmental Sustainability, 2018, 1, 209-215.	2.8	10

#	Article	IF	CITATIONS
73	Interactive Effects of Nutrients and Bradyrhizobium japonicum on the Growth and Root Architecture of Soybean (Glycine max L.). Frontiers in Microbiology, 2018, 9, 1000.	3.5	48
74	Potential effects of biochar-based microbial inoculants in agriculture. Environmental Sustainability, 2018, 1, 19-24.	2.8	50
75	Vegetation of Central Asia and Environs. , 2018, , .		10
76	Calcium application enhances growth and alleviates the damaging effects induced by Cd stress in sesame (<i>Sesamum indicum</i> L.). Journal of Plant Interactions, 2017, 12, 237-243.	2.1	37
77	Coordination between <i>Bradyrhizobium</i> and <i>Pseudomonas</i> alleviates salt stress in soybean through altering root system architecture. Journal of Plant Interactions, 2017, 12, 100-107.	2.1	145
78	Biochar-based Bradyrhizobium inoculum improves growth of lupin (Lupinus angustifolius L.) under drought stress. European Journal of Soil Biology, 2017, 78, 38-42.	3.2	75
79	Impact of soil salinity on the plant-growth – promoting and biological control abilities of root associated bacteria. Saudi Journal of Biological Sciences, 2017, 24, 1601-1608.	3.8	98
80	Thermally stimulated processes in Li and Cu doped alkali fluorides irradiated with electron beams of ultra-high dose. Journal of Physics: Conference Series, 2017, 830, 012143.	0.4	1
81	Tripartite Interaction Among Root-Associated Beneficial Microbes Under Stress. , 2017, , 219-236.		1
82	Increased resistance of drought by Trichoderma harzianum fungal treatment correlates with increased secondary metabolites and proline content. Journal of Integrative Agriculture, 2017, 16, 1751-1757.	3.5	119
83	Microbial cooperation in the rhizosphere improves liquorice growth under salt stress. Bioengineered, 2017, 8, 433-438.	3.2	37
84	Zinc application mitigates the adverse effects of NaCl stress on mustard [<i>Brassica juncea</i> (L.) Czern & Coss] through modulating compatible organic solutes, antioxidant enzymes, and flavonoid content. Journal of Plant Interactions, 2017, 12, 429-437.	2.1	63
85	Phytohormones and Beneficial Microbes: Essential Components for Plants to Balance Stress and Fitness. Frontiers in Microbiology, 2017, 8, 2104.	3.5	448
86	Antimicrobial Activity of Medicinal Plants Correlates with the Proportion of Antagonistic Endophytes. Frontiers in Microbiology, 2017, 8, 199.	3.5	136
87	Endophytic Bacteria Improve Plant Growth, Symbiotic Performance of Chickpea (Cicer arietinum L.) and Induce Suppression of Root Rot Caused by Fusarium solani under Salt Stress. Frontiers in Microbiology, 2017, 8, 1887.	3.5	227
88	Biodiversity, drug discovery, and the future of global health: Introducing the biodiversity to biomedicine consortium, a call to action. Journal of Global Health, 2017, 7, 020304.	2.7	29
89	Biochar Treatment Resulted in a Combined Effect on Soybean Growth Promotion and a Shift in Plant Growth Promoting Rhizobacteria. Frontiers in Microbiology, 2016, 7, 209.	3.5	114
90	The Interaction between Arbuscular Mycorrhizal Fungi and Endophytic Bacteria Enhances Plant Growth of Acacia gerrardii under Salt Stress. Frontiers in Microbiology, 2016, 7, 1089.	3.5	229

#	Article	IF	CITATIONS
91	Microbially Assisted Phytoremediation of Heavy Metal–Contaminated Soils. , 2016, , 483-498.		12
92	Bacillus spp.: A Potential Plant Growth Stimulator and Biocontrol Agent Under Hostile Environmental Conditions. , 2016, , 91-111.		15
93	Arbuscular mycorrhizal symbiosis and abiotic stress in plants: A review. Journal of Plant Biology, 2016, 59, 407-426.	2.1	188
94	Improvement of Crop Protection and Yield in Hostile Agroecological Conditions with PGPR-Based Biofertilizer Formulations. , 2016, , 199-211.		9
95	Bioremediation of adverse impact of cadmium toxicity on Cassia italica Mill by arbuscular mycorrhizal fungi. Saudi Journal of Biological Sciences, 2016, 23, 39-47.	3.8	79
96	A synergistic interaction between salt-tolerant Pseudomonas and Mesorhizobium strains improves growth and symbiotic performance of liquorice (Glycyrrhiza uralensis Fish.) under salt stress. Applied Microbiology and Biotechnology, 2016, 100, 2829-2841.	3.6	72
97	Alleviation of cadmium stress in Solanum lycopersicum L. by arbuscular mycorrhizal fungi via induction of acquired systemic tolerance. Saudi Journal of Biological Sciences, 2016, 23, 272-281.	3.8	133
98	Current Perspectives on Plant Growth-Promoting Rhizobacteria. Journal of Plant Growth Regulation, 2016, 35, 877-902.	5.1	145
99	Ochrobactrum endophyticum sp. nov., isolated from roots of Glycyrrhiza uralensis. Archives of Microbiology, 2016, 198, 171-179.	2.2	33
100	Synergistic interactions between Bradyrhizobium japonicum and the endophyte Stenotrophomonas rhizophila and their effects on growth, and nodulation of soybean under salt stress. Plant and Soil, 2016, 405, 35-45.	3.7	116
101	Arbuscular mycorrhizal fungi alleviate salt stress in lupine (<italic>Lupinus termis</italic> Forsik) through modulation of antioxidant defense systems and physiological traits. Legume Research, 2016, 39, .	0.1	7
102	Genome Analysis of Pseudomonas fluorescens PCL1751: A Rhizobacterium that Controls Root Diseases and Alleviates Salt Stress for Its Plant Host. PLoS ONE, 2015, 10, e0140231.	2.5	70
103	Role of Trichoderma harzianum in mitigating NaCl stress in Indian mustard (Brassica juncea L) through antioxidative defense system. Frontiers in Plant Science, 2015, 6, 868.	3.6	302
104	Potential Use of Licorice in Phytoremediation of Salt Affected Soils. , 2015, , 309-318.		5
105	Plant-Growth-Promoting Rhizobacteria (PGPR) and Medicinal Plants. Soil Biology, 2015, , .	0.8	24
106	Salt tolerant Methylobacterium mesophilicum showed viable colonization abilities in the plant rhizosphere. Saudi Journal of Biological Sciences, 2015, 22, 585-590.	3.8	17
107	Medicinal Plants and PGPR: A New Frontier for Phytochemicals. Soil Biology, 2015, , 287-303.	0.8	34
108	Plant Growth-Promoting Rhizobacteria (PGPR) and Medicinal Plants: The State of the Art. Soil Biology, 2015, , 1-16.	0.8	12

#	Article	IF	CITATIONS
109	Pseudomonas induces salinity tolerance in cotton (Gossypium hirsutum) and resistance to Fusarium root rot through the modulation of indole-3-acetic acid. Saudi Journal of Biological Sciences, 2015, 22, 773-779.	3.8	109
110	Arbuscular mycorrhizal fungi enhances salinity tolerance of <i>Panicum turgidum</i> Forssk by altering photosynthetic and antioxidant pathways. Journal of Plant Interactions, 2015, 10, 230-242.	2.1	117
111	Microbial Phytohormones Have a Key Role in Mitigating the Salt-Induced Damages in Plants. Sustainable Development and Biodiversity, 2015, , 283-296.	1.7	2
112	Protective role of gamma amminobutyric acid on Cassia italica Mill under salt stress. Legume Research, 2015, , .	0.1	4
113	Induction of salt stress tolerance in cowpea [<italic>Vigna unguiculata</italic> (L.) Walp.] by arbuscular mycorrhizal fungi. Legume Research, 2015, 38, .	0.1	15
114	Biological Control of Fungal Disease by Rhizobacteria under Saline Soil Conditions. , 2014, , 161-172.		8
115	Salinity Stress and Arbuscular Mycorrhizal Symbiosis in Plants. , 2014, , 139-159.		60
116	Alleviation of abiotic salt stress in <i>Ochradenus baccatus</i> (Del.) by <i>Trichoderma hamatum</i> (Bonord.) Bainier. Journal of Plant Interactions, 2014, 9, 857-868.	2.1	72
117	Use of Plant Growth-Promoting Rhizobacteria to Alleviate Salinity Stress in Plants. , 2014, , 73-96.		83
118	Beneficial Effects of Plant Growth-Promoting Rhizobacteria on Improved Crop Production: Prospects for Developing Economies. , 2013, , 45-63.		49
119	Alleviation of salt stress of symbiotic Galega officinalis L. (goat's rue) by co-inoculation of Rhizobium with root-colonizing Pseudomonas. Plant and Soil, 2013, 369, 453-465.	3.7	123
120	Alleviation of Salt Stress in Legumes by Co-inoculation with Pseudomonas and Rhizobium. , 2013, , 291-303.		25
121	Synthesis of Substituted Thieno[2,3- <i>d</i>]pyrimidin-4-ones and Their Testing for Evaluation of Cytotoxic Activity on Mammalian Cell Models. Journal of Chemistry, 2013, 2013, 1-6.	1.9	18
122	Methyl Carnosate, an Antibacterial Diterpene Isolated from Salvia officinalis Leaves. Natural Product Communications, 2013, 8, 1934578X1300800.	0.5	6
123	All Is Not as It Seems: Bleeding Through Several Diagnoses in a Perimenarchal Girl. Journal of Pediatric and Adolescent Gynecology, 2012, 25, e54-e55.	0.7	0
124	Pseudomonas chlororaphis: a salt-tolerant bacterial inoculant for plant growth stimulation under saline soil conditions. Acta Physiologiae Plantarum, 2012, 34, 751-756.	2.1	82
125	The Management of Soil Quality and Plant Productivity in Stressed Environment with Rhizobacteria. , 2012, , 27-40.		4
126	The Management of Soil Quality and Plant Productivity in Stressed Environment with Rhizobacteria. ,		4

2012, , 27-40.

#	Article	IF	CITATIONS
127	Flavonoids in <i>Scutellaria immaculata</i> and <i>S. ramosissima</i> (Lamiaceae) and their biological activity. Journal of Pharmacy and Pharmacology, 2011, 63, 1346-1357.	2.4	87
128	Survival of Pseudomonas extremorientalis TSAU20 and P. chlororaphis TSAU13 in the rhizosphere of common bean (Phaseolus vulgaris) under saline conditions. Plant, Soil and Environment, 2011, 57, 122-127.	2.2	78
129	Bacteria able to control foot and root rot and to promote growth of cucumber in salinated soils. Biology and Fertility of Soils, 2011, 47, 197-205.	4.3	159
130	Enhancement of growth and salt tolerance of red pepper seedlings (Capsicum annuum L.) by regulating stress ethylene synthesis with halotolerant bacteria containing 1-aminocyclopropane-1-carboxylic acid deaminase activity. Plant Physiology and Biochemistry, 2011, 49, 427-434.	5.8	232
131	Secondary salinity effects on soil microbial biomass. Biology and Fertility of Soils, 2010, 46, 445-449.	4.3	90
132	Fatty-acid composition and antibacterial activity of CHCl3 extracts of three plants of the genus Silene. Chemistry of Natural Compounds, 2010, 46, 95-96.	0.8	6
133	Neutral lipids and biological activity of the CHCl3 extract of the aerial part of Silene guntensis. Chemistry of Natural Compounds, 2010, 46, 621-622.	0.8	4
134	Growth response of wheat cultivars to bacterial inoculation in calcareous soil. Plant, Soil and Environment, 2010, 56, 570-573.	2.2	28
135	Co-inoculation of Pseudomonas spp. with Rhizobium improves growth and symbiotic performance of fodder galega (Galega orientalis Lam.). European Journal of Soil Biology, 2010, 46, 269-272.	3.2	103
136	Enzyme Activities in the Rhizosphere of Plants. Soil Biology, 2010, , 149-166.	0.8	18
137	Symbiotic Plant–Microbe Interactions: Stress Protection, Plant Growth Promotion, and Biocontrol by Stenotrophomonas. Cellular Origin and Life in Extreme Habitats, 2010, , 445-460.	0.3	42
138	Chemical components of Silene viridiflora and their biological properties. Chemistry of Natural Compounds, 2009, 45, 589-591.	0.8	5
139	Alleviation of salt stress by plant growth regulators and IAA producing bacteria in wheat. Acta Physiologiae Plantarum, 2009, 31, 861-864.	2.1	346
140	Selection for root colonising bacteria stimulating wheat growth in saline soils. Biology and Fertility of Soils, 2009, 45, 563-571.	4.3	292
141	High incidence of plant growthâ€stimulating bacteria associated with the rhizosphere of wheat grown on salinated soil in Uzbekistan. Environmental Microbiology, 2008, 10, 1-9.	3.8	288
142	Phytoecdysteroids and antibacterial activity of the plant Coronaria flos-cuculi. Chemistry of Natural Compounds, 2008, 44, 404-406.	0.8	7
143	Young Scientists Forum. FEBS Journal, 2008, 275, 439-470.	4.7	2
144	Alleviation of salinity stress in radishes with phytohormone producing rhizobacteria. Journal of Biotechnology, 2008, 136, S262.	3.8	6

#	Article	IF	CITATIONS
145	The effect of plant growth promoting bacteria on growth and nutrient uptake of maize in two different soils. Applied Soil Ecology, 2007, 36, 184-189.	4.3	426
146	Microbial activity and hydrolase activities during decomposition of root exudates released by an artificial root surface in Cd-contaminated soils. Soil Biology and Biochemistry, 2006, 38, 702-708.	8.8	85
147	Plant-growth-promoting rhizobacteria isolated from a Calcisol in a semi-arid region of Uzbekistan: biochemical characterization and effectiveness. Journal of Plant Nutrition and Soil Science, 2005, 168, 94-99.	1.9	78
148	Proteases. FEBS Journal, 2005, 272, 138-182.	4.7	0
149	Characterization ofPseudomonasSpecies Isolated from the Rhizosphere of Plants Grown in Serozem Soil, Semi-Arid Region of Uzbekistan. Scientific World Journal, The, 2005, 5, 501-509.	2.1	28
150	The Use of Bradyrhizobium to Enhance Growth and Yield of Soybean in Calcareous Soil in Uzbekistan. Journal of Plant Growth Regulation, 2004, 23, 54.	5.1	29
151	Growth and yield of soybean varieties inoculated with Bradyrhizobium spp in N-deficient calcareous soils. Biology and Fertility of Soils, 2004, 40, 144-146.	4.3	27
152	Effect of plant growth-promoting bacteria on growth and nutrient uptake of cotton and pea in a semi-arid region of Uzbekistan. Journal of Arid Environments, 2004, 56, 293-301.	2.4	127
153	Einfluss assoziativer bakterien aus unterschiedlichen klimaten auf das wachstum von erbse bei unterschiedlichen böden und temperaturen. Archives of Agronomy and Soil Science, 2003, 49, 203-212.	2.6	16
154	Influence of growth-promoting bacteria on the growth of wheat in different soils and temperatures. Soil Biology and Biochemistry, 2003, 35, 973-978.	8.8	152
155	Title is missing!. Plant Growth Regulation, 2002, 38, 219-224.	3.4	36
156	The Influence of Mineral Fertilizer Combined With a Nitrification Inhibitor on Microbial Populations and Activities in Calcareous Uzbekistanian Soil Under Cotton Cultivation. Scientific World Journal, The, 2001, 1, 108-113.	2.1	4
157	Influence of growth-promoting bacteria from Uzbekistan and Germany on the growth and nutrient uptake of cotton and wheat on different soils. , 2001, , 674-675.		6
158	Colonization of tomato roots by some potentially human-pathogenic bacteria and their plant-beneficial properties. EurAsian Journal of BioSciences, 0, , 112-118.	0.3	5
159	Biochar amendments improve licorice growth and nutrient uptake through altering the root system and soil enzyme activities in loamy sand under salt stress. , 0, , .		0
160	Colonization of Mycobacterium phlei in the rhizosphere of wheat grown under saline conditions. Turkish Journal of Biology, 0, , .	0.8	3