Adam L Kraus

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2304104/publications.pdf

Version: 2024-02-01

41339 46795 8,758 125 49 89 citations h-index g-index papers 125 125 125 4757 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Stellar Multiplicity. Annual Review of Astronomy and Astrophysics, 2013, 51, 269-310.	24.3	951
2	THE MASS DEPENDENCE BETWEEN PROTOPLANETARY DISKS AND THEIR STELLAR HOSTS. Astrophysical Journal, 2013, 771, 129.	4.5	527
3	LkCa 15: A YOUNG EXOPLANET CAUGHT AT FORMATION?. Astrophysical Journal, 2012, 745, 5.	4.5	312
4	MAPPING THE SHORES OF THE BROWN DWARF DESERT. II. MULTIPLE STAR FORMATION IN TAURUS-AURIGA. Astrophysical Journal, 2011, 731, 8.	4.5	260
5	The Stellar Populations of Praesepe and Coma Berenices. Astronomical Journal, 2007, 134, 2340-2352.	4.7	253
6	How to Constrain Your M Dwarf. II. The Mass–Luminosity–Metallicity Relation from 0.075 to 0.70 Solar Masses. Astrophysical Journal, 2019, 871, 63.	4.5	229
7	THE ROLE OF MULTIPLICITY IN DISK EVOLUTION AND PLANET FORMATION. Astrophysical Journal, 2012, 745, 19.	4.5	203
8	THE IMPACT OF STELLAR MULTIPLICITY ON PLANETARY SYSTEMS. I. THE RUINOUS INFLUENCE OF CLOSE BINARY COMPANIONS. Astronomical Journal, 2016, 152, 8.	4.7	200
9	Mapping the Shores of the Brown Dwarf Desert. I. Upper Scorpius. Astrophysical Journal, 2008, 679, 762-782.	4.5	176
10	A STELLAR CENSUS OF THE TUCANA-HOROLOGIUM MOVING GROUP. Astronomical Journal, 2014, 147, 146.	4.7	165
11	The Gaia–Kepler Stellar Properties Catalog. I. Homogeneous Fundamental Properties for 186,301 Kepler Stars. Astronomical Journal, 2020, 159, 280.	4.7	163
12	THE MASS-RADIUS(-ROTATION?) RELATION FOR LOW-MASS STARS. Astrophysical Journal, 2011, 728, 48.	4.5	159
13	ZODIACAL EXOPLANETS IN TIME (ZEIT). III. A SHORT-PERIOD PLANET ORBITING A PRE-MAIN-SEQUENCE STAR IN THE UPPER SCORPIUS OB ASSOCIATION. Astronomical Journal, 2016, 152, 61.	4.7	156
14	ZODIACAL EXOPLANETS IN TIME (ZEIT). I. A NEPTUNE-SIZED PLANET ORBITING AN M4.5 DWARF IN THE HYADES STAR CLUSTER. Astrophysical Journal, 2016, 818, 46.	4.5	155
15	A RESOLVED CENSUS OF MILLIMETER EMISSION FROM TAURUS MULTIPLE STAR SYSTEMS. Astrophysical Journal, 2012, 751, 115.	4.5	143
16	THE COEVALITY OF YOUNG BINARY SYSTEMS. Astrophysical Journal, 2009, 704, 531-547.	4.5	138
17	ZODIACAL EXOPLANETS IN TIME (ZEIT). IV. SEVEN TRANSITING PLANETS IN THE PRAESEPE CLUSTER. Astronomical Journal, 2017, 153, 64.	4.7	133
18	THREE WIDE PLANETARY-MASS COMPANIONS TO FW TAU, ROXs 12, AND ROXs 42B. Astrophysical Journal, 2014, 781, 20.	4.5	110

#	Article	IF	CITATIONS
19	TESS Hunt for Young and Maturing Exoplanets (THYME): A Planet in the 45 Myr Tucana–Horologium Association. Astrophysical Journal Letters, 2019, 880, L17.	8.3	110
20	A DISK AROUND THE PLANETARY-MASS COMPANION GSC 06214-00210 b: CLUES ABOUT THE FORMATION OF GAS GIANTS ON WIDE ORBITS. Astrophysical Journal, 2011, 743, 148.	4.5	96
21	ACCRETION ONTO PLANETARY MASS COMPANIONS OF LOW-MASS YOUNG STARS. Astrophysical Journal Letters, 2014, 783, L17.	8.3	96
22	Zodiacal Exoplanets in Time (ZEIT). VI. A Three-planet System in the Hyades Cluster Including an Earth-sized Planet. Astronomical Journal, 2018, 155, 4.	4.7	94
23	<i>KEPLER</i> -445, <i>KEPLER</i> -446 AND THE OCCURRENCE OF COMPACT MULTIPLES ORBITING MID-M DWARF STARS. Astrophysical Journal, 2015, 801, 18.	4.5	93
24	Poking the Beehive from Space: K2 Rotation Periods for Praesepe. Astrophysical Journal, 2017, 842, 83.	4.5	93
25	UNUSUALLY WIDE BINARIES: ARE THEY WIDE OR UNUSUAL?. Astrophysical Journal, 2009, 703, 1511-1530.	4.5	92
26	SPECTROSCOPIC CONFIRMATION OF YOUNG PLANETARY-MASS COMPANIONS ON WIDE ORBITS. Astrophysical Journal, 2014, 784, 65.	4.5	90
27	The Role of Mass and Environment in Multipleâ€Star Formation: A 2MASS Survey of Wide Multiplicity in Three Young Associations. Astrophysical Journal, 2007, 662, 413-430.	4.5	89
28	When Do Stalled Stars Resume Spinning Down? Advancing Gyrochronology with Ruprecht 147. Astrophysical Journal, 2020, 904, 140.	4.5	89
29	CORRECTING FOR TELLURIC ABSORPTION: METHODS, CASE STUDIES, AND RELEASE OF THE TelFit CODE. Astronomical Journal, 2014, 148, 53.	4.7	87
30	ORBITAL ARCHITECTURES OF PLANET-HOSTING BINARIES. I. FORMING FIVE SMALL PLANETS IN THE TRUNCATED DISK OF KEPLER-444A*. Astrophysical Journal, 2016, 817, 80.	4.5	87
31	All-sky Co-moving Recovery Of Nearby Young Members (ACRONYM). II. The Î ² Pictoris Moving Group ^{â^—} . Astronomical Journal, 2017, 154, 69.	4.7	84
32	Spatial Distributions of Young Stars. Astrophysical Journal, 2008, 686, L111-L114.	4.5	81
33	Zodiacal Exoplanets in Time (ZEIT). V. A Uniform Search for Transiting Planets in Young Clusters Observed by K2. Astronomical Journal, 2017, 154, 224.	4.7	81
34	Close Companions around Young Stars. Astronomical Journal, 2019, 157, 196.	4.7	81
35	TESS Spots a Compact System of Super-Earths around the Naked-eye Star HR 858. Astrophysical Journal Letters, 2019, 881, L19.	8.3	80
36	THE \hat{I}^2 ANDROMEDAE SYSTEM: NEW CONSTRAINTS ON THE COMPANION MASS, SYSTEM AGE, AND FURTHER MULTIPLICITY. Astrophysical Journal, 2013, 779, 153.	4.5	79

#	Article	IF	Citations
37	THE MASS–RADIUS RELATION OF YOUNG STARS. I. USCO 5, AN M4.5 ECLIPSING BINARY IN UPPER SCORPIUS OBSERVED BY K2. Astrophysical Journal, 2015, 807, 3.	4.5	79
38	The Greater Taurus–Auriga Ecosystem. I. There is a Distributed Older Population. Astrophysical Journal, 2017, 838, 150.	4.5	75
39	PLANETS AROUND LOW-MASS STARS (PALMS). I. A SUBSTELLAR COMPANION TO THE YOUNG M DWARF 1RXS J235133.3+312720. Astrophysical Journal, 2012, 753, 142.	4.5	74
40	Zodiacal Exoplanets in Time (ZEIT). VIII. A Two-planet System in Praesepe from K2 Campaign 16. Astronomical Journal, 2018, 156, 195.	4.7	72
41	THE FACTORY AND THE BEEHIVE. I. ROTATION PERIODS FOR LOW-MASS STARS IN PRAESEPE. Astrophysical Journal, 2011, 740, 110.	4.5	71
42	THE GEMINI NICI PLANET-FINDING CAMPAIGN: DISCOVERY OF A MULTIPLE SYSTEM ORBITING THE YOUNG A STAR HD 1160. Astrophysical Journal, 2012, 750, 53.	4.5	70
43	A New Look at an Old Cluster: The Membership, Rotation, and Magnetic Activity of Low-mass Stars in the 1.3 Gyr Old Open Cluster NGC 752. Astrophysical Journal, 2018, 862, 33.	4.5	69
44	TESS Hunt for Young and Maturing Exoplanets (THYME). III. A Two-planet System in the 400 Myr Ursa Major Group. Astronomical Journal, 2020, 160, 179.	4.7	68
45	TESTING THE METAL OF LATE-TYPE <i>KEPLER </i> PLANET HOSTS WITH IRON-CLAD METHODS. Astrophysical Journal, 2013, 770, 43.	4.5	67
46	A PAN-STARRS + UKIDSS SEARCH FOR YOUNG, WIDE PLANETARY-MASS COMPANIONS IN UPPER SCORPIUS. Astrophysical Journal, 2013, 773, 63.	4.5	67
47	OBSERVATIONAL CONSTRAINTS ON COMPANIONS INSIDE OF 10 AU IN THE HR 8799 PLANETARY SYSTEM. Astrophysical Journal Letters, 2011, 730, L21.	8.3	66
48	The Metallicity Distribution and Hot Jupiter Rate of the Kepler Field: Hectochelle High-resolution Spectroscopy for 776 Kepler Target Stars. Astrophysical Journal, 2017, 838, 25.	4.5	66
49	MULTIPLE STAR FORMATION TO THE BOTTOM OF THE INITIAL MASS FUNCTION. Astrophysical Journal, 2012, 757, 141.	4.5	65
50	TESS Hunt for Young and Maturing Exoplanets (THYME). II. A 17 Myr Old Transiting Hot Jupiter in the Sco-Cen Association. Astronomical Journal, 2020, 160, 33.	4.7	65
51	DYNAMICAL MASSES OF YOUNG M DWARFS: MASSES AND ORBITAL PARAMETERS OF GJ 3305 AB, THE WIDE BINARY COMPANION TO THE IMAGED EXOPLANET HOST 51 ERI. Astrophysical Journal Letters, 2015, 813, L11.	8.3	63
52	Multiplicity and Optical Excess across the Substellar Boundary in Taurus. Astrophysical Journal, 2006, 649, 306-318.	4.5	62
53	Origin of Interstellar Object A/2017 U1 in a Nearby Young Stellar Association?. Research Notes of the AAS, 2017, 1, 13.	0.7	62
54	ALMA MEASUREMENTS OF CIRCUMSTELLAR MATERIAL IN THE GQ LUP SYSTEM. Astrophysical Journal, 2017, 835, 17.	4.5	59

#	Article	IF	CITATIONS
55	Stars with Photometrically Young Gaia Luminosities Around the Solar System (SPYGLASS). I. Mapping Young Stellar Structures and Their Star Formation Histories. Astrophysical Journal, 2021, 917, 23.	4.5	56
56	Multiplicity at the Stellar/Substellar Boundary in Upper Scorpius. Astrophysical Journal, 2005, 633, 452-459.	4.5	55
57	SEARCHING FOR SCATTERERS: HIGH-CONTRAST IMAGING OF YOUNG STARS HOSTING WIDE-SEPARATION PLANETARY-MASS COMPANIONS. Astrophysical Journal, 2016, 827, 100.	4.5	54
58	The California-Kepler Survey. X. The Radius Gap as a Function of Stellar Mass, Metallicity, and Age. Astronomical Journal, 2022, 163, 179.	4.7	51
59	K2-231 b: A Sub-Neptune Exoplanet Transiting a Solar Twin in Ruprecht 147. Astronomical Journal, 2018, 155, 173.	4.7	49
60	DYNAMICAL MASSES OF YOUNG STARS. I. DISCORDANT MODEL AGES OF UPPER SCORPIUS. Astrophysical Journal, 2016, 817, 164.	4.5	47
61	The Young Substellar Companion ROXs 12 B: Near-infrared Spectrum, System Architecture, and Spin–Orbit Misalignment [*] . Astronomical Journal, 2017, 154, 165.	4.7	45
62	Gaia EDR3 Reveals the Substructure and Complicated Star Formation History of the Greater Taurus-Auriga Star-forming Complex. Astronomical Journal, 2021, 162, 110.	4.7	45
63	MAPPING THE SHORES OF THE BROWN DWARF DESERT. IV. OPHIUCHUS. Astrophysical Journal, 2015, 813, 83.	4.5	44
64	DISCOVERY OF SEVEN COMPANIONS TO INTERMEDIATE-MASS STARS WITH EXTREME MASS RATIOS IN THE SCORPIUS–CENTAURUS ASSOCIATION. Astrophysical Journal Letters, 2015, 806, L9.	8.3	44
65	A Super-Earth and Sub-Neptune Transiting the Late-type M Dwarf LP 791-18. Astrophysical Journal Letters, 2019, 883, L16.	8.3	42
66	ACRONYM. III. Radial Velocities for 336 Candidate Young Low-mass Stars in the Solar Neighborhood, Including 77 Newly Confirmed Young Moving Group Members. Astronomical Journal, 2019, 157, 234.	4.7	42
67	THREE NEW ECLIPSING WHITE-DWARF-M-DWARF BINARIES DISCOVERED IN A SEARCH FOR TRANSITING PLANETS AROUND M-DWARFS. Astrophysical Journal, 2012, 757, 133.	4.5	41
68	Zodiacal Exoplanets in Time (ZEIT). VII. A Temperate Candidate Super-Earth in the Hyades Cluster. Astronomical Journal, 2018, 156, 46.	4.7	36
69	HIGH-PRECISION RADIO AND INFRARED ASTROMETRY OF LSPM J1314+1320AB. II. TESTING PRE-MAIN-SEQUENCE MODELS AT THE LITHIUM DEPLETION BOUNDARY WITH DYNAMICAL MASSES. Astrophysical Journal, 2016, 827, 23.	4.5	35
70	TESS Hunt for Young and Maturing Exoplanets (THYME). V. A Sub-Neptune Transiting a Young Star in a Newly Discovered 250 Myr Association. Astronomical Journal, 2021, 161, 171.	4.7	35
71	THE CLOSE COMPANION MASS-RATIO DISTRIBUTION OF INTERMEDIATE-MASS STARS. Astronomical Journal, 2016, 152, 40.	4.7	34
72	TESS Hunt for Young and Maturing Exoplanets (THYME). IV. Three Small Planets Orbiting a 120 Myr Old Star in the Pisces–Eridanus Stream*. Astronomical Journal, 2021, 161, 65.	4.7	34

#	Article	IF	CITATIONS
73	TESS Hunt for Young and Maturing Exoplanets (THYME). VI. An 11 Myr Giant Planet Transiting a Very-low-mass Star in Lower Centaurus Crux. Astronomical Journal, 2022, 163, 156.	4.7	34
74	The Factory and the Beehive. III. PTFEB132.707+19.810, A Low-mass Eclipsing Binary in Praesepe Observed by PTF and K2. Astrophysical Journal, 2017, 845, 72.	4.5	32
75	Hubble Space Telescope UV and Hα Measurements of the Accretion Excess Emission from the Young Giant Planet PDS 70 b. Astronomical Journal, 2021, 161, 244.	4.7	31
76	Orbital Parameter Determination for Wide Stellar Binary Systems in the Age of Gaia. Astrophysical Journal, 2020, 894, 115.	4.5	30
77	AN ALMA DISK MASS FOR THE CANDIDATE PROTOPLANETARY COMPANION TO FW TAU. Astrophysical Journal Letters, 2015, 798, L23.	8.3	29
78	AN ALMA CONSTRAINT ON THE GSC 6214-210 B CIRCUM-SUBSTELLAR ACCRETION DISK MASS. Astrophysical Journal Letters, 2015, 805, L17.	8.3	28
79	The Hawaii Infrared Parallax Program. III. 2MASS J0249–0557 c: A Wide Planetary-mass Companion to a Low-mass Binary in the βÂPic Moving Group* ^{â€} . Astronomical Journal, 2018, 156, 57.	4.7	26
80	Orbital Motion of the Wide Planetary-mass Companion GSC 6214-210 b: No Evidence for Dynamical Scattering. Astronomical Journal, 2019, 157, 71.	4.7	24
81	Undetected Binary Stars Cause an Observed Mass-dependent Age Gradient in Upper Scorpius. Astrophysical Journal, 2021, 912, 137.	4.5	24
82	Characterizing Undetected Stellar Companions with Combined Data Sets. Astronomical Journal, 2021, 162, 128.	4.7	22
83	USco J1606â€1935: An Unusually Wide Lowâ€Mass Triple System?. Astrophysical Journal, 2007, 664, 1167-1175.	4.5	21
84	Eclipsing Binaries in the Open Cluster Ruprecht 147. I. EPIC 219394517. Astrophysical Journal, 2018, 866, 67.	4.5	21
85	HIGH-PRECISION RADIO AND INFRARED ASTROMETRY OF LSPM J1314+1320AB. I. PARALLAX, PROPER MOTIONS, AND LIMITS ON PLANETS. Astrophysical Journal, 2016, 827, 22.	4.5	19
86	Three K2 Campaigns Yield Rotation Periods for 1013 Stars in Praesepe. Astrophysical Journal, 2021, 921, 167.	4.5	19
87	Dynamical Mass of the Young Substellar Companion HD 984 B. Astronomical Journal, 2022, 163, 50.	4.7	19
88	LINKING STELLAR CORONAL ACTIVITY AND ROTATION AT 500 MYR: A DEEP <i>CHANDRA</i> OBSERVATION OF M37. Astrophysical Journal, 2015, 809, 161.	4.5	18
89	Zodiacal Exoplanets in Time (ZEIT). IX. A Flat Transmission Spectrum and a Highly Eccentric Orbit for the Young Neptune K2-25b as Revealed by Spitzer. Astronomical Journal, 2020, 159, 32.	4.7	18
90	A 38 Million Year Old Neptune-sized Planet in the Kepler Field. Astronomical Journal, 2022, 163, 121.	4.7	18

#	Article	IF	CITATIONS
91	Sparse aperture masking (SAM) at NAOS/CONICA on the VLT. Proceedings of SPIE, 2010, , .	0.8	16
92	The Effect of Binarity on Circumstellar Disk Evolution. Astrophysical Journal, 2019, 878, 45.	4.5	16
93	ALMA 0.88 mm Survey of Disks around Planetary-mass Companions. Astronomical Journal, 2020, 159, 229.	4.7	16
94	A Possible Alignment Between the Orbits of Planetary Systems and their Visual Binary Companions. Astronomical Journal, 2022, 163, 207.	4.7	15
95	Disk Material Inflates Gaia RUWE Values in Single Stars. Research Notes of the AAS, 2022, 6, 18.	0.7	14
96	A Search for Intermediate-separation Low-mass Binaries in the Orion Nebula Cluster. Astrophysical Journal, 2019, 886, 95.	4.5	13
97	Dynamical Masses of Young Stars. II. Young Taurus Binaries Hubble 4, FF Tau, and HP Tau/G3. Astrophysical Journal, 2020, 889, 175.	4.5	13
98	The IGRINS YSO Survey. I. Stellar Parameters of Pre-main-sequence Stars in Taurus-Auriga. Astrophysical Journal, 2021, 921, 53.	4.5	13
99	Giant Outer Transiting Exoplanet Mass (GOT †EM) Survey. I. Confirmation of an Eccentric, Cool Jupiter with an Interior Earth-sized Planet Orbiting Kepler-1514*. Astronomical Journal, 2021, 161, 103.	4.7	12
100	TESTING THE BINARY TRIGGER HYPOTHESIS IN FUors. Astrophysical Journal, 2016, 830, 29.	4.5	12
101	Eclipsing Binaries in the Open Cluster Ruprecht 147. III. The Triple System EPIC 219552514 at the Main-sequence Turnoff. Astrophysical Journal, 2020, 896, 162.	4.5	12
102	The First MOTESS-GNAT Variable-Star Survey. Astronomical Journal, 2007, 134, 1488-1502.	4.7	11
103	Orbital architectures of planet-hosting binaries – II. Low mutual inclinations between planetary and stellar orbits. Monthly Notices of the Royal Astronomical Society, 2022, 512, 648-660.	4.4	11
104	NEID Rossiter–McLaughlin Measurement of TOI-1268b: A Young Warm Saturn Aligned with Its Cool Host Star. Astrophysical Journal Letters, 2022, 926, L7.	8.3	11
105	A Mini-Neptune from TESS and CHEOPS Around the 120 Myr Old AB Dor Member HIP 94235. Astronomical Journal, 2022, 163, 289.	4.7	11
106	Binary Formation in the Orion Nebula Cluster: Exploring the Substellar Limit. Astrophysical Journal, 2022, 925, 112.	4.5	10
107	DIRECT SPECTRAL DETECTION: AN EFFICIENT METHOD TO DETECT AND CHARACTERIZE BINARY SYSTEMS. Astronomical Journal, 2016, 151, 3.	4.7	9
108	Eclipsing Binaries in the Open Cluster Ruprecht 147. II. Epic 219568666. Astrophysical Journal, 2019, 887, 109.	4.5	9

#	Article	lF	Citations
109	ALMA Discovery of a Disk around the Planetary-mass Companion SR 12 c. Astrophysical Journal Letters, 2022, 930, L3.	8.3	9
110	Boyajian's Star B: The Co-moving Companion to KIC 8462852 A. Astrophysical Journal, 2021, 909, 216.	4.5	6
111	Tiny grains shining bright in the gaps of Herbig Ae transitional discs. Monthly Notices of the Royal Astronomical Society, 2019, 486, 3721-3740.	4.4	5
112	An extreme-mass ratio, short-period eclipsing binary consisting of a B dwarf primary and a pre-main-sequence M star companion discovered by KELT. Monthly Notices of the Royal Astronomical Society, 2020, 499, 3775-3791.	4.4	5
113	Eclipsing Binaries in the Open Cluster Ruprecht 147. IV: The Active Triple System EPIC 219511354. Astrophysical Journal, 2021, 921, 133.	4.5	5
114	The Factory and the Beehive. IV. A Comprehensive Study of the Rotation X-Ray Activity Relation in Praesepe and the Hyades. Astrophysical Journal, 2022, 931, 45.	4.5	5
115	Searching for Wide Companions and Identifying Circum(sub)stellar Disks through PSF Fitting of Spitzer/IRAC Archival Images. Astronomical Journal, 2019, 158, 134.	4.7	4
116	Optical and Near-infrared Excesses are Correlated in T Tauri Stars. Astrophysical Journal, 2022, 928, 134.	4.5	4
117	A Mid-infrared Study of Directly Imaged Planetary-mass Companions Using Archival Spitzer/IRAC Images. Astronomical Journal, 2022, 163, 36.	4.7	4
118	Orbital Motion and Multi-Wavelength Monitoring of LkCa15 b. Proceedings of the International Astronomical Union, 2013, 8, 199-203.	0.0	3
119	Dynamical Masses for the Pleiades Binary System HII-2147. Astrophysical Journal, 2020, 898, 2.	4.5	2
120	ACRONYM IV: Three New, Young, Low-mass Spectroscopic Binaries. Astrophysical Journal, 2020, 896, 153.	4.5	1
121	MG1-688432: A Peculiar Variable System. Astrophysical Journal, Supplement Series, 2021, 256, 1.	7.7	1
122	Near-infrared Accretion Diagnostics of Young Stellar Objects. Research Notes of the AAS, 2019, 3, 195.	0.7	1
123	Constraining Temperature and Density of Accretion Flows in T Tauri Stars from Brackett Line Ratios. Research Notes of the AAS, 2020, 4, 7.	0.7	1
124	Establishing \hat{l}_{\pm} Oph as a Prototype Rotator: Precision Orbit with New Keck, CHARA, and RV Observations. Astrophysical Journal, 2021, 921, 41.	4.5	1
125	A New, Young, Low-Mass Spectroscopic Binary Without a Home. Proceedings of the International Astronomical Union, 2015, 10, 65-66.	0.0	0