Loraine Ly Chiu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2304021/publications.pdf

Version: 2024-02-01

430874 477307 32 1,726 18 29 citations h-index g-index papers 32 32 32 2612 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Scaffolds with covalently immobilized VEGF and Angiopoietin-1 for vascularization of engineered tissues. Biomaterials, 2010, 31, 226-241.	11.4	268
2	Biodegradable collagen patch with covalently immobilized VEGF for myocardial repair. Biomaterials, 2011, 32, 1280-1290.	11.4	211
3	Biomaterials in myocardial tissue engineering. Journal of Tissue Engineering and Regenerative Medicine, 2016, 10, 11-28.	2.7	182
4	Perfusable branching microvessel bed for vascularization of engineered tissues. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, E3414-23.	7.1	152
5	A peptide-modified chitosan–collagen hydrogel for cardiac cell culture and delivery. Acta Biomaterialia, 2012, 8, 1022-1036.	8.3	138
6	Biphasic Electrical Field Stimulation Aids in Tissue Engineering of Multicell-Type Cardiac Organoids. Tissue Engineering - Part A, 2011, 17, 1465-1477.	3.1	86
7	Controlled release of thymosin β4 using collagen–chitosan composite hydrogels promotes epicardial cell migration and angiogenesis. Journal of Controlled Release, 2011, 155, 376-385.	9.9	85
8	Endothelial cells guided by immobilized gradients of vascular endothelial growth factor on porous collagen scaffolds. Acta Biomaterialia, 2011, 7, 3027-3035.	8.3	73
9	Defining conditions for covalent immobilization of angiogenic growth factors onto scaffolds for tissue engineering. Journal of Tissue Engineering and Regenerative Medicine, 2011, 5, 69-84.	2.7	71
10	Engineered cardiac tissues. Current Opinion in Biotechnology, 2011, 22, 706-714.	6.6	66
11	Hydrogel Substrate Stiffness and Topography Interact to Induce Contact Guidance in Cardiac Fibroblasts. Macromolecular Bioscience, 2012, 12, 1342-1353.	4.1	42
12	Bioactive Scaffolds for Engineering Vascularized Cardiac Tissues. Macromolecular Bioscience, 2010, 10, 1286-1301.	4.1	41
13	Vascular Endothelial Growth Factor Secretion by Nonmyocytes Modulates Connexin-43 Levels in Cardiac Organoids. Tissue Engineering - Part A, 2012, 18, 1771-1783.	3.1	41
14	Hydrogels With Integrin-Binding Angiopoietin-1–Derived Peptide, QHREDGS, for Treatment of Acute Myocardial Infarction. Circulation: Heart Failure, 2015, 8, 333-341.	3.9	39
15	Controlled release of thymosin β4 from injected collagen–chitosan hydrogels promotes angiogenesis and prevents tissue loss after myocardial infarction. Regenerative Medicine, 2012, 7, 523-533.	1.7	38
16	Engineering of Oriented Myocardium on Three-Dimensional Micropatterned Collagen-Chitosan Hydrogel. International Journal of Artificial Organs, 2012, 35, 237-250.	1.4	37
17	Cardiac tissue engineering. Current Opinion in Chemical Engineering, 2013, 2, 41-52.	7.8	28
18	Characterization of Mechanical and Dielectric Properties of Silicone Rubber. Polymers, 2021, 13, 1831.	4.5	23

#	Article	IF	CITATIONS
19	Comparisons of Auricular Cartilage Tissues from Different Species. Annals of Otology, Rhinology and Laryngology, 2017, 126, 819-828.	1.1	22
20	Controlled delivery of thymosin \hat{l}^24 for tissue engineering and cardiac regenerative medicine. Annals of the New York Academy of Sciences, 2012, 1269, 16-25.	3.8	17
21	Tantalum-containing mesoporous bioactive glass powder for hemostasis. Journal of Biomaterials Applications, 2021, 35, 924-932.	2.4	13
22	Scaffoldâ€free cartilage tissue engineering with a small population of human nasoseptal chondrocytes. Laryngoscope, 2017, 127, E91-E99.	2.0	12
23	In vitro evaluation of novel titaniaâ€containing borate bioactive glass scaffolds. Journal of Biomedical Materials Research - Part A, 2021, 109, 146-158.	4.0	11
24	Engineering of scaffoldâ€free triâ€layered auricular tissues for external ear reconstruction. Laryngoscope, 2019, 129, E272-E283.	2.0	8
25	Stochastic Resonance with Dynamic Compression Improves the Growth of Adult Chondrocytes in Agarose Gel Constructs. Annals of Biomedical Engineering, 2019, 47, 243-256.	2.5	8
26	Cardiac Tissue Engineering. , 2011, , 421-456.		5
27	Cell Cycle Synchronization of Primary Articular Chondrocytes Enhances Chondrogenesis. Cartilage, 2021, 12, 526-535.	2.7	3
28	Direct and indirect co-culture of bone marrow stem cells and adipose-derived stem cells with chondrocytes in 3D scaffold-free culture. Journal of Regenerative Medicine & Tissue Engineering, 2016, $5, 1.$	1.5	3
29	Nanomaterials for cartilage tissue engineering. , 0, , 417-451.		1
30	Optimization of culture media to enhance the growth of tissue engineered cartilage. Biotechnology Progress, 2020, 36, e3017.	2.6	1
31	TRPV4 activation enhances compressive properties and glycosaminoglycan deposition of equine neocartilage sheets. Osteoarthritis and Cartilage Open, 2022, 4, 100263.	2.0	1
32	Generation of double-layered equine mesenchymal stromal cell-derived osteochondral constructs. Journal of Cartilage & Joint Preservation, 2022, , 100036.	0.5	0