## Yu-Jie Men

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2304016/publications.pdf Version: 2024-02-01



YILLIE MEN

| #  | Article                                                                                                                                                                                                                 | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Siderophores provoke extracellular superoxide production by <i>Arthrobacter</i> strains during carbon sourcesâ€level fluctuation. Environmental Microbiology, 2022, 24, 894-904.                                        | 1.8 | 5         |
| 2  | Accelerated Degradation of Perfluorosulfonates and Perfluorocarboxylates by UV/Sulfite + Iodide:<br>Reaction Mechanisms and System Efficiencies. Environmental Science & Technology, 2022, 56,<br>3699-3709.            | 4.6 | 59        |
| 3  | Microbial Defluorination of Unsaturated Per- and Polyfluorinated Carboxylic Acids under Anaerobic<br>and Aerobic Conditions: A Structure Specificity Study. Environmental Science & Technology, 2022,<br>56, 4894-4904. | 4.6 | 32        |
| 4  | Biotransformation of lincomycin and fluoroquinolone antibiotics by the ammonia oxidizers AOA, AOB and comammox: A comparison of removal, pathways, and mechanisms. Water Research, 2021, 196, 117003.                   | 5.3 | 33        |
| 5  | Near-Quantitative Defluorination of Perfluorinated and Fluorotelomer Carboxylates and Sulfonates with Integrated Oxidation and Reduction. Environmental Science & amp; Technology, 2021, 55, 7052-7062.                 | 4.6 | 79        |
| 6  | Structure-Specific Aerobic Defluorination of Short-Chain Fluorinated Carboxylic Acids by Activated Sludge Communities. Environmental Science and Technology Letters, 2021, 8, 668-674.                                  | 3.9 | 38        |
| 7  | Cometabolism of 17α-ethynylestradiol by nitrifying bacteria depends on reducing power availability and leads to elevated nitric oxide formation. Environment International, 2021, 153, 106528.                          | 4.8 | 14        |
| 8  | Comment on "Role of Ammonia Oxidation in Organic Micropollutant Transformation during<br>Wastewater Treatment― Overlooked Evidence to the Contrary. Environmental Science &<br>Technology, 2021, 55, 12128-12129.       | 4.6 | 8         |
| 9  | Specific phenotypic, genomic, and fitness evolutionary trajectories toward streptomycin resistance induced by pesticide co-stressors in <i>Escherichia coli</i> . ISME Communications, 2021, 1, .                       | 1.7 | 8         |
| 10 | Recovery trajectories and community resilience of biofilms in receiving rivers after wastewater treatment plant upgrade. Environmental Research, 2021, 199, 111349.                                                     | 3.7 | 10        |
| 11 | Defluorination of Omega-Hydroperfluorocarboxylates (ω-HPFCAs): Distinct Reactivities from Perfluoro<br>and Fluorotelomeric Carboxylates. Environmental Science & Technology, 2021, 55, 14146-14155.                     | 4.6 | 12        |
| 12 | Microbial Cleavage of C–F Bonds in Two C <sub>6</sub> Per- and Polyfluorinated Compounds via<br>Reductive Defluorination. Environmental Science & Technology, 2020, 54, 14393-14402.                                    | 4.6 | 73        |
| 13 | Molecular Tuning of Redoxâ€Copolymers for Selective Electrochemical Remediation. Advanced<br>Functional Materials, 2020, 30, 2004635.                                                                                   | 7.8 | 34        |
| 14 | Exposure to Environmental Levels of Pesticides Stimulates and Diversifies Evolution in <i>Escherichia coli</i> toward Higher Antibiotic Resistance. Environmental Science & Technology, 2020, 54, 8770-8778.            | 4.6 | 42        |
| 15 | Degradation of Perfluoroalkyl Ether Carboxylic Acids with Hydrated Electrons: Structure–Reactivity<br>Relationships and Environmental Implications. Environmental Science & Technology, 2020, 54,<br>2489-2499.         | 4.6 | 86        |
| 16 | Enhanced Degradation of Perfluorocarboxylic Acids (PFCAs) by UV/Sulfite Treatment: Reaction<br>Mechanisms and System Efficiencies at pH 12. Environmental Science and Technology Letters, 2020, 7,<br>351-357.          | 3.9 | 82        |
| 17 | Electrochemical Remediation: Molecular Tuning of Redox opolymers for Selective Electrochemical Remediation (Adv. Funct. Mater. 52/2020). Advanced Functional Materials, 2020, 30, 2070346.                              | 7.8 | 3         |
| 18 | Specific Micropollutant Biotransformation Pattern by the Comammox Bacterium <i>Nitrospira inopinata</i> . Environmental Science & Comp; Technology, 2019, 53, 8695-8705.                                                | 4.6 | 46        |

Yu-Jie Men

| #  | Article                                                                                                                                                                                                                                                                              | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Synthetic microbial consortia for biosynthesis and biodegradation: promises and challenges. Journal of Industrial Microbiology and Biotechnology, 2019, 46, 1343-1358.                                                                                                               | 1.4 | 85        |
| 20 | Cometabolic biotransformation and microbial-mediated abiotic transformation of sulfonamides by three ammonia oxidizers. Water Research, 2019, 159, 444-453.                                                                                                                          | 5.3 | 83        |
| 21 | Defluorination of Per- and Polyfluoroalkyl Substances (PFASs) with Hydrated Electrons: Structural<br>Dependence and Implications to PFAS Remediation and Management. Environmental Science &<br>Technology, 2019, 53, 3718-3728.                                                     | 4.6 | 297       |
| 22 | Microbial residence time is a controlling parameter of the taxonomic composition and functional profile of microbial communities. ISME Journal, 2019, 13, 1589-1601.                                                                                                                 | 4.4 | 24        |
| 23 | Insights into the roles of anammox bacteria in post-treatment of anaerobically-treated sewage.<br>Critical Reviews in Environmental Science and Technology, 2018, 48, 655-684.                                                                                                       | 6.6 | 23        |
| 24 | Trends in Micropollutant Biotransformation along a Solids Retention Time Gradient. Environmental<br>Science & Technology, 2018, 52, 11601-11611.                                                                                                                                     | 4.6 | 22        |
| 25 | Emerging investigators series: occurrence and fate of emerging organic contaminants in wastewater treatment plants with an enhanced nitrification step. Environmental Science: Water Research and Technology, 2018, 4, 1412-1426.                                                    | 1.2 | 26        |
| 26 | Ammonia Monooxygenase-Mediated Cometabolic Biotransformation and Hydroxylamine-Mediated<br>Abiotic Transformation of Micropollutants in an AOB/NOB Coculture. Environmental Science &<br>Technology, 2018, 52, 9196-9205.                                                            | 4.6 | 68        |
| 27 | Metagenomic and Metatranscriptomic Analyses Reveal the Structure and Dynamics of a<br>Dechlorinating Community Containing Dehalococcoides mccartyi and Corrinoid-Providing<br>Microorganisms under Cobalamin-Limited Conditions. Applied and Environmental Microbiology, 2017,<br>83 | 1.4 | 29        |
| 28 | Microbe–microbe interactions trigger Mn(II)-oxidizing gene expression. ISME Journal, 2017, 11, 67-77.                                                                                                                                                                                | 4.4 | 39        |
| 29 | Relative contribution of ammonia oxidizing bacteria and other members of nitrifying activated sludge communities to micropollutant biotransformation. Water Research, 2017, 109, 217-226.                                                                                            | 5.3 | 124       |
| 30 | Biotransformation of Two Pharmaceuticals by the Ammonia-Oxidizing Archaeon <i>Nitrososphaera gargensis</i> . Environmental Science & amp; Technology, 2016, 50, 4682-4692.                                                                                                           | 4.6 | 68        |
| 31 | Identification of specific corrinoids reveals corrinoid modification in dechlorinating microbial communities. Environmental Microbiology, 2015, 17, 4873-4884.                                                                                                                       | 1.8 | 57        |
| 32 | Development of a Fluorescence-Activated Cell Sorting Method Coupled with Whole Genome<br>Amplification To Analyze Minority and Trace <i>Dehalococcoides</i> Genomes in Microbial<br>Communities. Environmental Science & Technology, 2015, 49, 1585-1593.                            | 4.6 | 14        |
| 33 | Can meta-omics help to establish causality between contaminant biotransformations and genes or gene products?. Environmental Science: Water Research and Technology, 2015, 1, 272-278.                                                                                               | 1.2 | 26        |
| 34 | Sustainable Growth of Dehalococcoides mccartyi 195 by Corrinoid Salvaging and Remodeling in<br>Defined Lactate-Fermenting Consortia. Applied and Environmental Microbiology, 2014, 80, 2133-2141.                                                                                    | 1.4 | 63        |
| 35 | A bioassay for the detection of benzimidazoles reveals their presence in a range of environmental samples. Frontiers in Microbiology, 2014, 5, 592.                                                                                                                                  | 1.5 | 19        |
| 36 | Incomplete Wood–Ljungdahl pathway facilitates one-carbon metabolism in organohalide-respiring<br><i>Dehalococcoides mccartyi</i> . Proceedings of the National Academy of Sciences of the United<br>States of America, 2014, 111, 6419-6424.                                         | 3.3 | 104       |

Yu-Jie Men

| #  | Article                                                                                                                                                                                                                                                      | IF               | CITATIONS           |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|---------------------|
| 37 | Characterization of four TCE-dechlorinating microbial enrichments grown with different cobalamin stress and methanogenic conditions. Applied Microbiology and Biotechnology, 2013, 97, 6439-6450.                                                            | 1.7              | 54                  |
| 38 | Versatility in Corrinoid Salvaging and Remodeling Pathways Supports Corrinoid-Dependent<br>Metabolism in Dehalococcoides mccartyi. Applied and Environmental Microbiology, 2012, 78, 7745-7752.                                                              | 1.4              | 116                 |
| 39 | Sustainable syntrophic growth of <i>Dehalococcoides ethenogenes</i> strain 195 with<br><i>Desulfovibrio vulgaris</i> Hildenborough and <i>Methanobacterium congolense</i> : global<br>transcriptomic and proteomic analyses. ISME Journal, 2012, 6, 410-421. | 4.4              | 137                 |
| 40 | The effect of Poterioochromonas abundance on production of intra- and extracellular microcystin-LR concentration. Hydrobiologia, 2010, 652, 237-246.                                                                                                         | 1.0              | 14                  |
| 41 | Feeding characteristics of a golden alga (Poterioochromonas sp.) grazing on toxic cyanobacterium<br>Microcystis aeruginosa. Water Research, 2009, 43, 2953-2960.                                                                                             | 5.3              | 35                  |
| 42 | Effects of the novel allelochemical ethyl 2-methylacetoacetate from the reed (Phragmitis australis) Tj ETQq0 0 0                                                                                                                                             | gBT /Over<br>1.5 | lock 10 Tf 50<br>25 |

521-527.