Yu-Jie Men

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2304016/publications.pdf

Version: 2024-02-01

218677 254184 2,221 42 26 43 citations h-index g-index papers 51 51 51 2055 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Defluorination of Per- and Polyfluoroalkyl Substances (PFASs) with Hydrated Electrons: Structural Dependence and Implications to PFAS Remediation and Management. Environmental Science & Samp; Technology, 2019, 53, 3718-3728.	10.0	297
2	Sustainable syntrophic growth of <i>Dehalococcoides ethenogenes</i> strain 195 with <i>Desulfovibrio vulgaris</i> Hildenborough and <i>Methanobacterium congolense</i> global transcriptomic and proteomic analyses. ISME Journal, 2012, 6, 410-421.	9.8	137
3	Relative contribution of ammonia oxidizing bacteria and other members of nitrifying activated sludge communities to micropollutant biotransformation. Water Research, 2017, 109, 217-226.	11.3	124
4	Versatility in Corrinoid Salvaging and Remodeling Pathways Supports Corrinoid-Dependent Metabolism in Dehalococcoides mccartyi. Applied and Environmental Microbiology, 2012, 78, 7745-7752.	3.1	116
5	Incomplete Wood–Ljungdahl pathway facilitates one-carbon metabolism in organohalide-respiring <i>Dehalococcoides mccartyi</i>). Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 6419-6424.	7.1	104
6	Degradation of Perfluoroalkyl Ether Carboxylic Acids with Hydrated Electrons: Structure–Reactivity Relationships and Environmental Implications. Environmental Science & Environmental Science & 2489-2499.	10.0	86
7	Synthetic microbial consortia for biosynthesis and biodegradation: promises and challenges. Journal of Industrial Microbiology and Biotechnology, 2019, 46, 1343-1358.	3.0	85
8	Cometabolic biotransformation and microbial-mediated abiotic transformation of sulfonamides by three ammonia oxidizers. Water Research, 2019, 159, 444-453.	11.3	83
9	Enhanced Degradation of Perfluorocarboxylic Acids (PFCAs) by UV/Sulfite Treatment: Reaction Mechanisms and System Efficiencies at pH 12. Environmental Science and Technology Letters, 2020, 7, 351-357.	8.7	82
10	Near-Quantitative Defluorination of Perfluorinated and Fluorotelomer Carboxylates and Sulfonates with Integrated Oxidation and Reduction. Environmental Science & Environmental Science & 2021, 55, 7052-7062.	10.0	79
11	Microbial Cleavage of C–F Bonds in Two C ₆ Per- and Polyfluorinated Compounds via Reductive Defluorination. Environmental Science & Technology, 2020, 54, 14393-14402.	10.0	73
12	Biotransformation of Two Pharmaceuticals by the Ammonia-Oxidizing Archaeon <i>Nitrososphaera gargensis</i> . Environmental Science & Environmental Scie	10.0	68
13	Ammonia Monooxygenase-Mediated Cometabolic Biotransformation and Hydroxylamine-Mediated Abiotic Transformation of Micropollutants in an AOB/NOB Coculture. Environmental Science & Emp; Technology, 2018, 52, 9196-9205.	10.0	68
14	Sustainable Growth of Dehalococcoides mccartyi 195 by Corrinoid Salvaging and Remodeling in Defined Lactate-Fermenting Consortia. Applied and Environmental Microbiology, 2014, 80, 2133-2141.	3.1	63
15	Accelerated Degradation of Perfluorosulfonates and Perfluorocarboxylates by UV/Sulfite + Iodide: Reaction Mechanisms and System Efficiencies. Environmental Science & Environm	10.0	59
16	Identification of specific corrinoids reveals corrinoid modification in dechlorinating microbial communities. Environmental Microbiology, 2015, 17, 4873-4884.	3.8	57
17	Characterization of four TCE-dechlorinating microbial enrichments grown with different cobalamin stress and methanogenic conditions. Applied Microbiology and Biotechnology, 2013, 97, 6439-6450.	3.6	54
18	Specific Micropollutant Biotransformation Pattern by the Comammox Bacterium <i>Nitrospira inopinata</i> . Environmental Science & Environmental Science	10.0	46

#	Article	IF	CITATIONS
19	Exposure to Environmental Levels of Pesticides Stimulates and Diversifies Evolution in <i>Escherichia coli</i> toward Higher Antibiotic Resistance. Environmental Science & Environmental Environmenta	10.0	42
20	Microbe–microbe interactions trigger Mn(II)-oxidizing gene expression. ISME Journal, 2017, 11, 67-77.	9.8	39
21	Structure-Specific Aerobic Defluorination of Short-Chain Fluorinated Carboxylic Acids by Activated Sludge Communities. Environmental Science and Technology Letters, 2021, 8, 668-674.	8.7	38
22	Feeding characteristics of a golden alga (Poterioochromonas sp.) grazing on toxic cyanobacterium Microcystis aeruginosa. Water Research, 2009, 43, 2953-2960.	11.3	35
23	Molecular Tuning of Redoxâ€Copolymers for Selective Electrochemical Remediation. Advanced Functional Materials, 2020, 30, 2004635.	14.9	34
24	Biotransformation of lincomycin and fluoroquinolone antibiotics by the ammonia oxidizers AOA, AOB and comammox: A comparison of removal, pathways, and mechanisms. Water Research, 2021, 196, 117003.	11.3	33
25	Microbial Defluorination of Unsaturated Per- and Polyfluorinated Carboxylic Acids under Anaerobic and Aerobic Conditions: A Structure Specificity Study. Environmental Science & Environmental Science	10.0	32
26	Metagenomic and Metatranscriptomic Analyses Reveal the Structure and Dynamics of a Dechlorinating Community Containing Dehalococcoides mccartyi and Corrinoid-Providing Microorganisms under Cobalamin-Limited Conditions. Applied and Environmental Microbiology, 2017, 83, .	3.1	29
27	Can meta-omics help to establish causality between contaminant biotransformations and genes or gene products?. Environmental Science: Water Research and Technology, 2015, 1, 272-278.	2.4	26
28	Emerging investigators series: occurrence and fate of emerging organic contaminants in wastewater treatment plants with an enhanced nitrification step. Environmental Science: Water Research and Technology, 2018, 4, 1412-1426.	2.4	26
29	Effects of the novel allelochemical ethyl 2-methylacetoacetate from the reed (Phragmitis australis) Tj ETQq1 1 0. 521-527.	784314 rg 2.8	
30	Microbial residence time is a controlling parameter of the taxonomic composition and functional profile of microbial communities. ISME Journal, 2019, 13, 1589-1601.	9.8	24
31	Insights into the roles of anammox bacteria in post-treatment of anaerobically-treated sewage. Critical Reviews in Environmental Science and Technology, 2018, 48, 655-684.	12.8	23
32	Trends in Micropollutant Biotransformation along a Solids Retention Time Gradient. Environmental Science & Environmental Scien	10.0	22
33	A bioassay for the detection of benzimidazoles reveals their presence in a range of environmental samples. Frontiers in Microbiology, 2014, 5, 592.	3.5	19
34	The effect of Poterioochromonas abundance on production of intra- and extracellular microcystin-LR concentration. Hydrobiologia, 2010, 652, 237-246.	2.0	14
35	Development of a Fluorescence-Activated Cell Sorting Method Coupled with Whole Genome Amplification To Analyze Minority and Trace <i>Dehalococcoides</i> Genomes in Microbial Communities. Environmental Science & Environment	10.0	14
36	Cometabolism of 17î±-ethynylestradiol by nitrifying bacteria depends on reducing power availability and leads to elevated nitric oxide formation. Environment International, 2021, 153, 106528.	10.0	14

Yu-Jie Men

#	Article	IF	CITATIONS
37	Defluorination of Omega-Hydroperfluorocarboxylates (ω-HPFCAs): Distinct Reactivities from Perfluoro and Fluorotelomeric Carboxylates. Environmental Science & Environmental Science & 2021, 55, 14146-14155.	10.0	12
38	Recovery trajectories and community resilience of biofilms in receiving rivers after wastewater treatment plant upgrade. Environmental Research, 2021, 199, 111349.	7.5	10
39	Comment on "Role of Ammonia Oxidation in Organic Micropollutant Transformation during Wastewater Treatment― Overlooked Evidence to the Contrary. Environmental Science & Technology, 2021, 55, 12128-12129.	10.0	8
40	Specific phenotypic, genomic, and fitness evolutionary trajectories toward streptomycin resistance induced by pesticide co-stressors in <i>Escherichia coli</i> . ISME Communications, 2021, 1, .	4.2	8
41	Siderophores provoke extracellular superoxide production by <i>Arthrobacter</i> strains during carbon sourcesâ€level fluctuation. Environmental Microbiology, 2022, 24, 894-904.	3.8	5
42	Electrochemical Remediation: Molecular Tuning of Redoxâ€Copolymers for Selective Electrochemical Remediation (Adv. Funct. Mater. 52/2020). Advanced Functional Materials, 2020, 30, 2070346.	14.9	3