Hayden K Taylor

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2303659/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Latent image volumetric additive manufacturing. Optics Letters, 2022, 47, 1279.	1.7	17
2	Computational optimization and the role of optical metrology in tomographic additive manufacturing. , 2022, , .		0
3	Friction of Ti ₃ C ₂ T _{<i>x</i>} MXenes. Nano Letters, 2022, 22, 3356-3363.	4.5	46
4	Sectorization of Macromolecular Single Crystals Unveiled by Probing Shear Anisotropy. ACS Macro Letters, 2022, 11, 53-59.	2.3	0
5	Volumetric additive manufacturing of silica glass with microscale computed axial lithography. Science, 2022, 376, 308-312.	6.0	94
6	3Y-TZP DLP Additive Manufacturing: Solvent-free Slurry Development and Characterization. Materials Research, 2021, 24, .	0.6	18
7	Advances in biofabrication techniques towards functional bioprinted heterogeneous engineered tissues: A comprehensive review. Bioprinting, 2021, 23, e00147.	2.9	35
8	Thermal and mechanical performance of a novel 3D printed macro-encapsulation method for phase change materials. Journal of Building Engineering, 2021, 43, 103124.	1.6	7
9	High fidelity volumetric additive manufacturing. Additive Manufacturing, 2021, 47, 102299.	1.7	18
10	Object-space optimization of tomographic reconstructions for additive manufacturing. Additive Manufacturing, 2021, 48, 102367.	1.7	17
11	Multilayered microcasting of agarose–collagen composites for neurovascular modeling. Bioprinting, 2020, 17, e00069.	2.9	12
12	Mechanical Properties and Flexural Behavior of Sustainable Bamboo Fiber-Reinforced Mortar. Applied Sciences (Switzerland), 2020, 10, 6587.	1.3	17
13	Polymer lattice-reinforcement for enhancing ductility of concrete. Materials and Design, 2020, 196, 109184.	3.3	57
14	Utilization of waste materials in a novel mortar–polymer laminar composite to be applied in construction 3D-printing. Composite Structures, 2020, 253, 112764.	3.1	28
15	Stable dropwise condensation observed on a hierarchically structured superhydrophobic surface incorporating micro-domes. Microelectronic Engineering, 2020, 225, 111252.	1.1	12
16	Tomographic color Schlieren refractive index mapping for computed axial lithography. , 2020, , .		3
17	Recent advances in microfluidic methods in cancer liquid biopsy. Biomicrofluidics, 2019, 13, 041503.	1.2	39
18	Volumetric additive manufacturing via tomographic reconstruction. Science, 2019, 363, 1075-1079.	6.0	584

HAYDEN K TAYLOR

#	Article	IF	CITATIONS
19	Highlighting the uniqueness in dielectrophoretic enrichment of circulating tumor cells. Electrophoresis, 2019, 40, 1457-1477.	1.3	23
20	A computational design framework for two-layered elastic stamps in nanoimprint lithography and microcontact printing. Journal of Applied Physics, 2019, 125, .	1.1	1
21	Spatially Precise Transfer of Patterned Monolayer WS ₂ and MoS ₂ with Features Larger than 10 ⁴ μm ² Directly from Multilayer Sources. ACS Applied Electronic Materials, 2019, 1, 407-416.	2.0	23
22	An Octet-Truss Engineered Concrete (OTEC) for lightweight structures. Composite Structures, 2019, 207, 373-384.	3.1	13
23	Deterministic Assembly of Arrays of Lithographically Defined WS2 and MoS2 Monolayer Features Directly From Multilayer Sources Into Van Der Waals Heterostructures. Journal of Micro and Nano-Manufacturing, 2019, 7, .	0.8	12
24	Cell therapy using an array of ultrathin hollow microneedles. Microsystem Technologies, 2018, 24, 2905-2912.	1.2	10
25	Nonsolvent-induced phase separation synthesis of superhydrophobic coatings composed of polyvinylidene difluoride microspheres with tunable size and roughness. Progress in Organic Coatings, 2018, 119, 230-238.	1.9	6
26	Review Article: Capturing the physiological complexity of the brain's neuro-vascular unit <i>in vitro</i> . Biomicrofluidics, 2018, 12, 051502.	1.2	15
27	Theory of thin-film-mediated exfoliation of van der Waals bonded layered materials. Physical Review Materials, 2018, 2, .	0.9	18
28	Micro-engineering a platform to reconstruct physiology and functionality of the human brain microvasculature in vitro. , 2018, , .		1
29	Computed axial lithography: volumetric 3D printing of arbitrary geometries (Conference) Tj ETQq1 1 0.784314 r	gBT /Overl	lock 10 Tf 5 $^{\circ}$
30	A nanoporous, ultrahydrophobic aluminum-coating process with exceptional dropwise condensation and shedding properties. Materials Research Express, 2017, 4, 045003.	0.8	6
31	Defectivity prediction for droplet-dispensed UV nanoimprint lithography, enabled by fast simulation of resin flow at feature, droplet, and template scales. Proceedings of SPIE, 2016, , .	0.8	4
32	A statistical model for the wettability of surfaces with heterogeneous pore geometries. Materials Research Express, 2016, 3, 105039.	0.8	6
33	Bioinspired fibrillar adhesives: a review of analytical models and experimental evidence for adhesion enhancement by surface patterns. Journal of Adhesion Science and Technology, 2016, 30, 362-391.	1.4	35
34	Controlled Folding of Graphene: GraFold Printing. Nano Letters, 2015, 15, 857-863.	4.5	27
35	Superlubricity-activated thinning of graphite flakes compressed by passivated crystalline silicon substrates for graphene exfoliation. Carbon, 2014, 80, 68-74.	5.4	6
36	Fast Simulation of Pattern Formation and Process Dependencies in Roller Nanoimprint Lithography. Materials Research Society Symposia Proceedings, 2013, 1529, 1.	0.1	1

HAYDEN K TAYLOR

#	Article	IF	CITATIONS
37	A practical guide for the fabrication of microfluidic devices using glass and silicon. Biomicrofluidics, 2012, 6, 16505-1650516.	1.2	281
38	Simulation and Mitigation of Pattern and Process Dependencies in Nanoimprint Lithography. Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi], 2011, 24, 47-55.	0.1	5
39	Modeling and simulation of stamp deflections in nanoimprint lithography: Exploiting backside grooves to enhance residual layer thickness uniformity. Microelectronic Engineering, 2011, 88, 2154-2157.	1.1	12
40	A razor-blade test of the demolding energy in a thermoplastic embossing process. Journal of Micromechanics and Microengineering, 2011, 21, 067002.	1.5	13
41	Towards nanoimprint lithography-aware layout design checking. Proceedings of SPIE, 2010, , .	0.8	13
42	An investigation of the detrimental impact of trapped air in thermoplastic micro-embossing. Journal of Micromechanics and Microengineering, 2010, 20, 065014.	1.5	15
43	A method for the accelerated simulation of micro-embossed topographies in thermoplastic polymers. Journal of Micromechanics and Microengineering, 2010, 20, 065001.	1.5	7
44	Metallic glasses: viable tool materials for the production of surface microstructures in amorphous polymers by micro-hot-embossing. Journal of Micromechanics and Microengineering, 2009, 19, 115030.	1.5	59
45	A computationally simple method for simulating the micro-embossing of thermoplastic layers. Journal of Micromechanics and Microengineering, 2009, 19, 075007.	1.5	21
46	Three-dimensional profile stitching based on the fiducial markers for microfluidic devices. Optics Communications, 2009, 282, 493-499.	1.0	16
47	Large-area and high-resolution distortion measurement based on moiré fringe method for hot embossing process. Optics Express, 2009, 17, 18394.	1.7	5
48	Fusion of metrology data for large-scale high-volume manufacturing of polymer-based microfluidic devices. International Journal of Nanomanufacturing, 2009, 3, 312.	0.3	1
49	Computationally efficient modelling of pattern dependencies in the micro-embossing of thermoplastic polymers. Microelectronic Engineering, 2008, 85, 1453-1456.	1.1	7
50	Variation. IEEE Transactions on Semiconductor Manufacturing, 2008, 21, 63-71.	1.4	30
51	Modeling pattern dependencies in the micron-scale embossing of polymeric layers. Proceedings of SPIE, 2008, , .	0.8	2
52	Moire fringe method for the measurement of distortions of hot-embossed polymeric substrates. , 2008, , .		0
53	2D and 3D growth of carbon nanotubes on substrates, from nanometre to millimetre scales. International Journal of Nanomanufacturing, 2007, 1, 701.	0.3	7
54	Characterizing and Predicting Spatial Nonuniformity in the Deep Reactive Ion Etching of Silicon. Journal of the Electrochemical Society, 2006, 153, C575.	1.3	19