Benjamin Barwick

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2303511/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	PDZ Proteins SCRIB and DLG1 Regulate Myeloma Cell Surface CD86 Expression, Growth, and Survival. Molecular Cancer Research, 2022, 20, 1122-1136.	1.5	3
2	Multivariant Transcriptome Analysis Identifies Modules and Hub Genes Associated with Poor Outcomes in Newly Diagnosed Multiple Myeloma Patients. Cancers, 2022, 14, 2228.	1.7	3
3	Î ² adrenergic signaling regulates hematopoietic stem and progenitor cell commitment and therapy sensitivity in multiple myeloma. Haematologica, 2022, 107, 2226-2231.	1.7	3
4	YAP1 Expression in SCLC Defines a Distinct Subtype With T-cell–Inflamed Phenotype. Journal of Thoracic Oncology, 2021, 16, 464-476.	0.5	93
5	Chromatin Accessibility Identifies Regulatory Elements Predictive of Gene Expression and Disease Outcome in Multiple Myeloma. Clinical Cancer Research, 2021, 27, 3178-3189.	3.2	15
6	Venetoclax sensitivity in multiple myeloma is associated with B-cell gene expression. Blood, 2021, 137, 3604-3615.	0.6	44
7	Acetylation of KLF5 maintains EMT and tumorigenicity to cause chemoresistant bone metastasis in prostate cancer. Nature Communications, 2021, 12, 1714.	5.8	70
8	Oncolytic herpes simplex virus infects myeloma cells inÂvitro and inÂvivo. Molecular Therapy - Oncolytics, 2021, 20, 519-531.	2.0	8
9	Ten-eleven translocation protein 1 modulates medulloblastoma progression. Genome Biology, 2021, 22, 125.	3.8	3
10	The Murine MHC Class II Super Enhancer <i>IA/IE-SE</i> Contains a Functionally Redundant CTCF-Binding Component and a Novel Element Critical for Maximal Expression. Journal of Immunology, 2021, 206, 2221-2232.	0.4	3
11	Wholeâ€genome analysis of TET dioxygenase function in regulatory T cells. EMBO Reports, 2021, 22, e52716.	2.0	19
12	Aberrant Extrafollicular B Cells, Immune Dysfunction, Myeloid Inflammation, and MyD88-Mutant Progenitors Precede Waldenstrom Macroglobulinemia. Blood Cancer Discovery, 2021, 2, 600-615.	2.6	15
13	P-073: PDZ proteins, SCRIB and DLG1, regulate CD86 surface expression, myeloma growth, and survival. Clinical Lymphoma, Myeloma and Leukemia, 2021, 21, S79.	0.2	0
14	Functional Genomic and Immune Response Characterization of PTEN Loss: Therapeutic Implications for Myeloma. Blood, 2021, 138, 1612-1612.	0.6	0
15	Disrupting Ectopic Super-Enhancers to Treat Multiple Myeloma. Blood, 2021, 138, 1593-1593.	0.6	0
16	Disrupting Mitohormesis As a Novel Therapeutic Strategy for Multiple Myeloma (MM) Including Those with High Risk Disease and Proteosome Inhibitor Resistance. Blood, 2021, 138, 722-722.	0.6	3
17	BRAF Mutations and Inflammatory Gene Expression in Myeloma Cells from Patients with Renal Dysfunction. Blood, 2021, 138, 1624-1624.	0.6	0
18	Functional Oncogenomic and Immune Response Landscape for Genes Recurrently Mutated in Myeloma. Blood, 2021, 138, 1589-1589.	0.6	0

BENJAMIN BARWICK

#	Article	IF	CITATIONS
19	Mitochondrial Electron Transport Chain Inhibition Promotes Resistance to Proteasome Inhibitors in Multiple Myeloma. Blood, 2021, 138, 1611-1611.	0.6	0
20	PD-1 Expression during Acute Infection Is Repressed through an LSD1–Blimp-1 Axis. Journal of Immunology, 2020, 204, 449-458.	0.4	24
21	CD28 Regulates Metabolic Fitness for Long-Lived Plasma Cell Survival. Cell Reports, 2020, 31, 107815.	2.9	32
22	We need CD38 STAT-JAK. Blood, 2020, 136, 2246-2248.	0.6	0
23	Epigenetically heterogeneous tumor cells direct collective invasion through filopodia-driven fibronectin micropatterning. Science Advances, 2020, 6, eaaz6197.	4.7	41
24	Downregulation of PA28α induces proteasome remodeling and results in resistance to proteasome inhibitors in multiple myeloma. Blood Cancer Journal, 2020, 10, 125.	2.8	7
25	Electron transport chain activity is a predictor and target for venetoclax sensitivity in multiple myeloma. Nature Communications, 2020, 11, 1228.	5.8	62
26	Increased DNA Repair Gene Expression Correlates with MYC Expression and Inferior Progression-Free Survival in Multiple Myeloma Patients. Blood, 2020, 136, 48-49.	0.6	1
27	Chromatin Accessibility Identifies Regulatory Elements Predictive of Oncogene Expression in Multiple Myeloma. Blood, 2020, 136, 31-32.	0.6	Ο
28	Epigenetic programming underpins B cell dysfunction in human SLE. Nature Immunology, 2019, 20, 1071-1082.	7.0	142
29	Genetic heterogeneity within collective invasion packs drives leader and follower cell phenotypes. Journal of Cell Science, 2019, 132, .	1.2	23
30	Cell of Origin and Genetic Alterations in the Pathogenesis of Multiple Myeloma. Frontiers in Immunology, 2019, 10, 1121.	2.2	103
31	Multiple myeloma immunoglobulin lambda translocations portend poor prognosis. Nature Communications, 2019, 10, 1911.	5.8	109
32	Integrated phosphoproteomics and transcriptional classifiers reveal hidden RAS signaling dynamics in multiple myeloma. Blood Advances, 2019, 3, 3214-3227.	2.5	19
33	Gain of Chromosome 1q is associated with early progression in multiple myeloma patients treated with lenalidomide, bortezomib, and dexamethasone. Blood Cancer Journal, 2019, 9, 94.	2.8	104
34	The Role of Proteasome Activator PA28Î \pm in Multiple Myeloma. Blood, 2019, 134, 5499-5499.	0.6	0
35	Multiple Myeloma Epigenetic Programming Prognostic of Outcome Converges with Loci Reprogrammed in Relapsed/Refractory Disease. Blood, 2019, 134, 858-858.	0.6	2
36	EZH2 Represses the B Cell Transcriptional Program and Regulates Antibody-Secreting Cell Metabolism and Antibody Production. Journal of Immunology, 2018, 200, 1039-1052.	0.4	99

BENJAMIN BARWICK

#	Article	IF	CITATIONS
37	Galactic Cosmic Radiation Induces Persistent Epigenome Alterations Relevant to Human Lung Cancer. Scientific Reports, 2018, 8, 6709.	1.6	26
38	Plasma cell differentiation is controlled by multiple cell division-coupled epigenetic programs. Nature Communications, 2018, 9, 1698.	5.8	93
39	14-3-3ζ binds the proteasome, limits proteolytic function and enhances sensitivity to proteasome inhibitors. Leukemia, 2018, 32, 744-751.	3.3	12
40	The Histone Demethylase LSD1 Regulates B Cell Proliferation and Plasmablast Differentiation. Journal of Immunology, 2018, 201, 2799-2811.	0.4	43
41	B cell activation and plasma cell differentiation are inhibited by de novo DNA methylation. Nature Communications, 2018, 9, 1900.	5.8	94
42	Immunoglobulin Lambda Translocations Identify Poor Outcome and IMiD Resistance in Multiple Myeloma and Co-Occur with Hyperdiploidy. Blood, 2018, 132, 405-405.	0.6	3
43	Whole Genome DNA Methylation Analysis of Commpass Identifies Biomarkers of Multiple Myeloma Survival. Blood, 2018, 132, 3174-3174.	0.6	0
44	A Role for Syntenin-1 in Multiple Myeloma Cell Survival. Blood, 2018, 132, 1008-1008.	0.6	0
45	Conserved Region C Functions To Regulate PD-1 Expression and Subsequent CD8 T Cell Memory. Journal of Immunology, 2017, 198, 205-217.	0.4	24
46	MAX is an epigenetic sensor of 5-carboxylcytosine and is altered in multiple myeloma. Nucleic Acids Research, 2017, 45, 2396-2407.	6.5	69
47	LSD1 protects against hippocampal and cortical neurodegeneration. Nature Communications, 2017, 8, 805.	5.8	55
48	CD86 regulates myeloma cell survival. Blood Advances, 2017, 1, 2307-2319.	2.5	15
49	ATAC-seq on biobanked specimens defines a unique chromatin accessibility structure in naÃ⁻ve SLE B cells. Scientific Reports, 2016, 6, 27030.	1.6	88
50	Factors affecting the persistence of drug-induced reprogramming of the cancer methylome. Epigenetics, 2016, 11, 273-287.	1.3	8
51	Plasma cell differentiation is coupled to division-dependent DNA hypomethylation and gene regulation. Nature Immunology, 2016, 17, 1216-1225.	7.0	124
52	Genome-wide CIITA-binding profile identifies sequence preferences that dictate function versus recruitment. Nucleic Acids Research, 2015, 43, 3128-3142.	6.5	28
53	Common distal elements orchestrate CIITA isoform-specific expression in multiple cell types. Genes and Immunity, 2014, 15, 543-555.	2.2	16
54	Global DNA Methylation Remodeling Accompanies CD8 T Cell Effector Function. Journal of Immunology, 2013, 191, 3419-3429.	0.4	167

BENJAMIN BARWICK

#	Article	IF	CITATIONS
55	Wnt signaling in triple negative breast cancer is associated with metastasis. BMC Cancer, 2013, 13, 537.	1.1	210
56	Differential Activation of Wnt-β-Catenin Pathway in Triple Negative Breast Cancer Increases MMP7 in a PTEN Dependent Manner. PLoS ONE, 2013, 8, e77425.	1.1	61
57	A heterozygous <i>IDH1^{R132H/WT}</i> mutation induces genome-wide alterations in DNA methylation. Genome Research, 2012, 22, 2339-2355.	2.4	157
58	Age-associated DNA methylation in pediatric populations. Genome Research, 2012, 22, 623-632.	2.4	326
59	Molecular characterisation of formalin-fixed paraffin-embedded (FFPE) breast tumour specimens using a custom 512-gene breast cancer bead array-based platform. British Journal of Cancer, 2011, 105, 1574-1581.	2.9	15
60	Prostate cancer genes associated with TMPRSS2–ERG gene fusion and prognostic of biochemical recurrence in multiple cohorts. British Journal of Cancer, 2010, 102, 570-576.	2.9	61
61	Heterozygosity for Pten Promotes Tumorigenesis in a Mouse Model of Medulloblastoma. PLoS ONE, 2010, 5, e10849.	1.1	40
62	DNA Extraction from Formalin-Fixed, Paraffin-Embedded Tissue. Cold Spring Harbor Protocols, 2009, 2009, pdb.prot5138-pdb.prot5138.	0.2	28
63	PROTEIN-CODING AND MICRORNA BIOMARKER GENE PANELS PREDICTIVE OF CLINICAL RECURRENCE IN PROSTATE CANCER. Journal of Urology, 2009, 181, 776-776.	0.2	1
64	Discovery of a novel set of prostate cancer-related genes associated with the prognostically important TMPRSS2:ERG fusion gene. Journal of Clinical Oncology, 2008, 26, 5056-5056.	0.8	0
65	SF1126, a Novel PI3K Inhibitor Results in Downstream Inhibition of the PI3K Axis and Displays Sequence Specific Synergy When Combined with Bortezomib in Multiple Myeloma Cells. Blood, 2008, 112, 5167-5167.	0.6	2
66	Invited Keynote Talk: Data Mining and Statistical Methods for Analyzing Microarray Experiments. , 2008, , 444-444.		0