
Vincenzo Casolaro

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2303387/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Role of oxidative stress in the pathogenesis of COPD. Minerva Medica, 2022, 113, .	0.9	30
2	Prevalence and Antimicrobial Resistance of Causative Agents to Ocular Infections. Antibiotics, 2022, 11, 463.	3.7	6
3	Role of autoimmunity in the pathogenesis of chronic obstructive pulmonary disease and pulmonary emphysema. , 2022, , 311-331.		2
4	Niclosamide as a Repurposing Drug against Corynebacterium striatum Multidrug-Resistant Infections. Antibiotics, 2022, 11, 651.	3.7	9
5	lgG Autoantibodies Against IgE from Atopic Dermatitis Can Induce the Release of Cytokines and Proinflammatory Mediators from Basophils and Mast Cells. Frontiers in Immunology, 2022, 13, .	4.8	12
6	Mucosal-Associated Invariant T Cells in T-Cell Non-Hodgkin Lymphomas: A Case Series. Cancers, 2022, 14, 2921.	3.7	0
7	Modulation of the PI3K/Akt/mTOR signaling pathway by probiotics as a fruitful target for orchestrating the immune response. Gut Microbes, 2021, 13, 1-17.	9.8	48
8	Probiotic-Based Vaccines May Provide Effective Protection against COVID-19 Acute Respiratory Disease. Vaccines, 2021, 9, 466.	4.4	30
9	Role of Atypical Chemokines and Chemokine Receptors Pathways in the Pathogenesis of COPD. Current Medicinal Chemistry, 2021, 28, 2577-2653.	2.4	11
10	Food Allergy and Intolerance: A Narrative Review on Nutritional Concerns. Nutrients, 2021, 13, 1638.	4.1	52
11	Damage-Associated Molecular Patterns Modulation by microRNA: Relevance on Immunogenic Cell Death and Cancer Treatment Outcome. Cancers, 2021, 13, 2566.	3.7	22
12	Prevalence and Antimicrobial Resistance of Enterococcus Species: A Retrospective Cohort Study in Italy. Antibiotics, 2021, 10, 1552.	3.7	24
13	Basophil degranulation in response to IgE ligation is controlled by a distinctive circadian clock in asthma. Allergy: European Journal of Allergy and Clinical Immunology, 2020, 75, 158-168.	5.7	11
14	Role of Human Leukocyte Antigen System as A Predictive Biomarker for Checkpoint-Based Immunotherapy in Cancer Patients. International Journal of Molecular Sciences, 2020, 21, 7295.	4.1	49
15	Posttranscriptional Gene Regulatory Networks in Chronic Airway Inflammatory Diseases: In silico Mapping of RNA-Binding Protein Expression in Airway Epithelium. Frontiers in Immunology, 2020, 11, 579889.	4.8	6
16	Dendritic Cells and Immunogenic Cancer Cell Death: A Combination for Improving Antitumor Immunity. Pharmaceutics, 2020, 12, 256.	4.5	56
17	Abstract 3132: Single nucleotide polymorphisms (SNPs) in PD-L1 as predictive biomarkers for checkpoint inhibitor based-immunotherapy in caucasian patients with advanced NSCLC. , 2020, , .		0
18	A Novel Dendritic Cell-Based Vaccination Protocol to Stimulate Immunosurveillance of Aggressive Cancers. Methods in Molecular Biology, 2019, 1884, 317-333.	0.9	8

#	Article	IF	CITATIONS
19	Enhanced Expression of CD47 Is Associated With Off-Target Resistance to Tyrosine Kinase Inhibitor Gefitinib in NSCLC. Frontiers in Immunology, 2019, 10, 3135.	4.8	41
20	Microbiota Composition and the Integration of Exogenous and Endogenous Signals in Reactive Nasal Inflammation. Journal of Immunology Research, 2018, 2018, 1-17.	2.2	28
21	Immunogenic Apoptosis as a Novel Tool for Anticancer Vaccine Development. International Journal of Molecular Sciences, 2018, 19, 594.	4.1	95
22	Herpesvirus Infections and Risk of Frailty and Mortality in Older Women: Women's Health and Aging Studies. Journal of the American Geriatrics Society, 2016, 64, 998-1005.	2.6	12
23	Sa1397 Regulators of IgE-Dependent Immune Response Are Activated in the Duodenal Mucosa of Atopic But Not Non-Celiac Gluten Sensitivity (NCGS) Patients. Gastroenterology, 2016, 150, S304.	1.3	Ο
24	Gliadin Induces Neutrophil Migration via Engagement of the Formyl Peptide Receptor, FPR1. PLoS ONE, 2015, 10, e0138338.	2.5	38
25	Inflammasome: Cancer's friend or foe?. , 2014, 143, 24-33.		79
26	Fragments of truth: T-cell targets of polyclonal immunoglobulins in autoimmune diseases. Current Opinion in Pharmacology, 2014, 17, 1-11.	3.5	10
27	Immunologic changes in frail older adults. Translational Medicine @ UniSa, 2014, 9, 1-6.	0.5	35
28	Is Health-Related Quality of Life Associated with Upper and Lower Airway Inflammation in Asthmatics?. BioMed Research International, 2013, 2013, 1-7.	1.9	3
29	Basic and clinical immunology – 3010. The RNA-binding protein HuR coordinately regulates GATA-3 and Th2 cytokine gene expression in dose dependent manner. World Allergy Organization Journal, 2013, 6, P186.	3.5	0
30	65 Mucosal Duodenal Tissue From Gluten-Sensitive Patients Do Not Have Increased Expression of IgA B Cell Switch Markers. Gastroenterology, 2012, 142, S-17.	1.3	0
31	Neutrophils From Healthy Individuals but Not Celiac Disease Patients Show Chemotactic Activity to PT-Gliadin. Gastroenterology, 2011, 140, S-644.	1.3	Ο
32	Peripheral and Mucosal B Cells From Celiac Disease Patients Show Increased Expression of CXCR3 and IgA Switch Markers. Gastroenterology, 2011, 140, S-643.	1.3	0
33	Identification of a novel immunomodulatory gliadin peptide that causes interleukin-8 release in a chemokine receptor CXCR3-dependent manner only in patients with coeliac disease. Immunology, 2011, 132, 432-440.	4.4	80
34	Divergence of gut permeability and mucosal immune gene expression in two gluten-associated conditions: celiac disease and gluten sensitivity. BMC Medicine, 2011, 9, 23.	5.5	379
35	Coordinate Regulation of <i>GATA-3</i> and Th2 Cytokine Gene Expression by the RNA-Binding Protein HuR. Journal of Immunology, 2011, 187, 441-449.	0.8	45
36	Cytomegalovirus Infection and the Risk of Mortality and Frailty in Older Women: A Prospective Observational Cohort Study. American Journal of Epidemiology, 2010, 171, 1144-1152.	3.4	218

#	Article	IF	CITATIONS
37	Differential Mucosal IL-17 Expression in Two Gliadin-Induced Disorders: Gluten Sensitivity and the Autoimmune Enteropathy Celiac Disease. International Archives of Allergy and Immunology, 2010, 152, 75-80.	2.1	209
38	S2033 Mucosal Expression of IL-6 is Significantly Increased in Celiac Disease but Not in Gluten Sensitivity. Gastroenterology, 2010, 138, S-305-S-306.	1.3	0
39	OC.09.3 MUCOSAL EXPRESSION OF IL-6 IS SIGNIFICANTLY INCREASED IN CELIAC DISEASE BUT NOT IN GLUTEN SENSITIVITY. Digestive and Liver Disease, 2010, 42, S91-S92.	0.9	0
40	M1700 Cluten Sensitivity Is Associated to Activation of the Innate But Not Adaptive Immune Response to Cluten Exposure. Gastroenterology, 2009, 136, A-413.	1.3	0
41	M2038 PBMC from Celiac Patients But Not Healthy Controls Produce Interleukin-8 in Response to Gliadin That Is Cxcr3-Dependent. Gastroenterology, 2009, 136, A-472.	1.3	2
42	T cell polarization identifies distinct clinical phenotypes in scleroderma lung disease. Arthritis and Rheumatism, 2008, 58, 1165-1174.	6.7	66
43	Tâ€Lymphocytes Expressing CC Chemokine Receptorâ€5 Are Increased in Frail Older Adults. Journal of the American Geriatrics Society, 2008, 56, 904-908.	2.6	65
44	Posttranscriptional regulation of IL-13 in T cells: Role of the RNA-binding protein HuR. Journal of Allergy and Clinical Immunology, 2008, 121, 853-859.e4.	2.9	67
45	GATA3 up-regulation associated with surface expression of CD294/CRTH2: a unique feature of human Th cells. Blood, 2007, 109, 4343-4350.	1.4	47
46	Role of the RNA-binding Protein HuR in Posttranscriptional Regulation of IL-13 in T Cells. Journal of Allergy and Clinical Immunology, 2007, 119, S133.	2.9	0
47	Differential Expression of NF-κB Molecular Species in Th1 and Th2 Cells. Journal of Allergy and Clinical Immunology, 2006, 117, S177.	2.9	0
48	Phenotypic Assessment of a Functional Sequence Variant of the Gene Encoding Human Chemoattractant Receptor-homologous Molecule Expressed on Th2 Cells (crth2). Journal of Allergy and Clinical Immunology, 2006, 117, S195.	2.9	0
49	Aspirin Exerts Opposite Regulation of CD154 and Cytokine Gene Expression in Human Th1 and Th2 Cells. Journal of Allergy and Clinical Immunology, 2006, 117, S201.	2.9	0
50	Expression of Polarized T-Cell Surface Markers in Respiratory Allergy. Journal of Allergy and Clinical Immunology, 2006, 117, S247.	2.9	0
51	Characterization of a novel PMA-inducible pathway of interleukin-13 gene expression in T cells. Immunology, 2006, 117, 29-37.	4.4	16
52	Lysophosphatidic acid enhances interleukin-13 gene expression and promoter activity in T cells. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2006, 290, L66-L74.	2.9	47
53	T-helper cell type-2 regulation in allergic disease. European Respiratory Journal, 2005, 26, 1119-1137.	6.7	144
54	Expression of genes for B7-H3 and other T cell ligands by nasal epithelial cells during differentiation and activation. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2004, 287, L217-L225.	2.9	29

#	Article	IF	CITATIONS
55	Inhibition of Cytokine Gene Transcription by the Human Recombinant Histamine-Releasing Factor in Human T Lymphocytes. Journal of Immunology, 2003, 171, 3742-3750.	0.8	28
56	Regulation of Eotaxin Gene Expression by TNF-α and IL-4 Through mRNA Stabilization: Involvement of the RNA-Binding Protein HuR. Journal of Immunology, 2003, 171, 4369-4378.	0.8	114
57	GATA-3 activates the IL-13 gene promoter in T cells. Journal of Allergy and Clinical Immunology, 2002, 109, S274-S275.	2.9	0
58	Histone deacetylation inhibits IL4 gene expression in T cells. Journal of Allergy and Clinical Immunology, 2002, 109, 238-245.	2.9	70
59	Selective expression of nuclear factor of activated T cells 2/c1 in human basophils: Evidence for involvement in IgE-mediated IL-4 generation. Journal of Allergy and Clinical Immunology, 2002, 109, 507-513.	2.9	23
60	Testing for Gene–Gene Interaction Controlling Total IgE in Families from Barbados: Evidence of Sensitivity Regarding Linkage Heterogeneity among Families. Genomics, 2001, 71, 246-251.	2.9	12
61	Selective inhibition of interleukin-4 gene expression in human T cells by aspirin. Blood, 2001, 97, 1742-1749.	1.4	69
62	Yin-Yang 1 Activates Interleukin-4 Gene Expression in T Cells. Journal of Biological Chemistry, 2001, 276, 48871-48878.	3.4	44
63	Interleukin-13 Upregulates Eotaxin Expression in Airway Epithelial Cells by a STAT6-Dependent Mechanism. American Journal of Respiratory Cell and Molecular Biology, 2001, 24, 755-761.	2.9	162
64	Characterization of a novel negative regulatory element in the human interleukin 4 promoter. Leukemia, 2000, 14, 629-635.	7.2	10
65	Glucocorticoids Inhibit Calcium- and Calcineurin-Dependent Activation of the Human IL-4 Promoter. Journal of Immunology, 2000, 164, 825-832.	0.8	60
66	Role of NF-κB in Cytokine Production Induced from Human Airway Epithelial Cells by Rhinovirus Infection. Journal of Immunology, 2000, 165, 3384-3392.	0.8	98
67	Atopic Dermatitis Is Associated with a Functional Mutation in the Promoter of the C-C Chemokine RANTES. Journal of Immunology, 2000, 164, 1612-1616.	0.8	279
68	Characterization of P5, a Novel NFAT/AP-1 Site in the Human IL-4 Promoter. Biochemical and Biophysical Research Communications, 2000, 270, 1016-1023.	2.1	31
69	Identification and Characterization of a Critical CP2-binding Element in the Human Interleukin-4 Promoter. Journal of Biological Chemistry, 2000, 275, 36605-36611.	3.4	37
70	1085 Interaction between loci on chromosones 12q and 17q increases susceptibility to elevated total IgE in two distinct populations. Journal of Allergy and Clinical Immunology, 2000, 105, S370.	2.9	0
71	485 Dissociation of the effects of salicylates on IL-4 gene expression on NFAT activation in human T cells. Journal of Allergy and Clinical Immunology, 2000, 105, S158-S159.	2.9	1
72	817 NF-?B-dependent transcription of the human IL-13 gene in activated T cells. Journal of Allergy and Clinical Immunology, 2000, 105, S278.	2.9	0

#	Article	IF	CITATIONS
73	High mobility group I/Y protein functions as a specific cofactor for Oct-2A: mapping of interaction domains. Journal of Leukocyte Biology, 1998, 64, 681-691.	3.3	18
74	Stat6 Inhibits Human Interleukin-4 Promoter Activity in T Cells. Blood, 1998, 92, 4529-4538.	1.4	38
75	Stat6 Inhibits Human Interleukin-4 Promoter Activity in T Cells. Blood, 1998, 92, 4529-4538.	1.4	5
76	The Molecular Basis of IL-4 Dysregulation in the Atopic Condition. , 1998, , 171-192.		0
77	Molecular Basis and Role of Differential Cytokine Production in T Helper Cell Subsets in Immunologic Disease. Advances in Experimental Medicine and Biology, 1998, 438, 479-484.	1.6	1
78	Molecular and Cellular Biology of Mast Cells and Basophils. International Archives of Allergy and Immunology, 1997, 114, 207-217.	2.1	105
79	Biology and genetics of atopic disease. Current Opinion in Immunology, 1996, 8, 796-803.	5.5	83
80	Inhibition of NF-AT-dependent transcription by NF-kappa B: implications for differential gene expression in T helper cell subsets Proceedings of the National Academy of Sciences of the United States of America, 1995, 92, 11623-11627.	7.1	85
81	The antineoplastic bryostatins affect human basophils and mast cells differently. Blood, 1995, 85, 1272-1281.	1.4	28
82	In vitro and in vivo Characterization of the Anti-Inflammatory Effects of Cyclosporin A. International Archives of Allergy and Immunology, 1992, 99, 279-283.	2.1	8
83	Anti-Inflammatory Effect of Deflazacort. International Archives of Allergy and Immunology, 1992, 99, 340-342.	2.1	3
84	Human Basophil/Mast Cell Releasability. Anesthesiology, 1992, 77, 932-940.	2.5	82
85	Anti-Inflammatory Effect of Cyclosporin A on Human Skin Mast Cells. Journal of Investigative Dermatology, 1992, 98, 800-804.	0.7	132
86	Adenosine receptors on human leukocytes IV. characterization of an A1/Ri receptor. International Journal of Clinical and Laboratory Research, 1992, 22, 235-242.	1.0	6
87	Selective activation of human mast cells by general anesthetics. Agents and Actions, 1992, 36, C191-C194.	0.7	7
88	Inhibition of histamine release from human FcεRI+ cells by nimesulide. Agents and Actions, 1992, 36, C311-C314.	0.7	7
89	Human Mast Cells, Basophils and Their Mediators. , 1992, , 63-79.		1
90	GENERAL ANAESTHETICS INDUCE ONLY HISTAMINE RELEASE SELECTIVELY FROM HUMAN MAST CELLS. British Journal of Anaesthesia, 1991, 67, 751-758.	3.4	58

#	Article	IF	CITATIONS
91	Human Basophil Releasability: VI. Changes in Basophil Releasability in Patients with Allergic Rhinitis or Bronchial Asthma. The American Review of Respiratory Disease, 1990, 142, 1108-1111.	2.9	63
92	Adenosine receptors of human leukocytes—II. Biochemical Pharmacology, 1990, 40, 1963-1973.	4.4	22
93	Human Basophil/Mast Cell Releasability: V. Functional Comparisons of Cells Obtained from Peripheral Blood, Lung Parenchyma, and Bronchoalveolar Lavage in Asthmatics. The American Review of Respiratory Disease, 1989, 139, 1375-1382.	2.9	100
94	lgG Anti-IgE from Atopic Dermatitis Induces Mediator Release from Basophils and Mast Cells. Journal of Investigative Dermatology, 1989, 93, 246-252.	0.7	88
95	Pathophysiology of human basophils and mast cells in allergic disorders. Clinical Immunology and Immunopathology, 1989, 50, S24-S40.	2.0	48
96	Immunomodulation in Allergic Diseases: When Anti-inflammatory Agents Play Immunomodulation. , 0, , 220-220.		0