Salvador Aznar-Cervantes

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2303222/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Textile/Metal–Organicâ€Framework Composites as Selfâ€Detoxifying Filters for Chemicalâ€Warfare Agents. Angewandte Chemie - International Edition, 2015, 54, 6790-6794.	7.2	291
2	Fabrication of conductive electrospun silk fibroin scaffolds by coating with polypyrrole for biomedical applications. Bioelectrochemistry, 2012, 85, 36-43.	2.4	146
3	High quality, low oxygen content and biocompatible graphene nanosheets obtained by anodic exfoliation of different graphite types. Carbon, 2015, 94, 729-739.	5.4	83
4	Effects of composite films of silk fibroin and graphene oxide on the proliferation, cell viability and mesenchymal phenotype of periodontal ligament stem cells. Journal of Materials Science: Materials in Medicine, 2014, 25, 2731-2741.	1.7	75
5	Impact of Covalent Functionalization on the Aqueous Processability, Catalytic Activity, and Biocompatibility of Chemically Exfoliated MoS ₂ Nanosheets. ACS Applied Materials & Interfaces, 2016, 8, 27974-27986.	4.0	73
6	Electrospun silk fibroin scaffolds coated with reduced graphene promote neurite outgrowth of PC-12 cells under electrical stimulation. Materials Science and Engineering C, 2017, 79, 315-325.	3.8	71
7	Fabrication of electrospun silk fibroin scaffolds coated with graphene oxide and reduced graphene for applications in biomedicine. Bioelectrochemistry, 2016, 108, 36-45.	2.4	56
8	Silk fibroin scaffolds seeded with Wharton's jelly mesenchymal stem cells enhance re-epithelialization and reduce formation of scar tissue after cutaneous wound healing. Stem Cell Research and Therapy, 2019, 10, 126.	2.4	56
9	Influence of the protocol used for fibroin extraction on the mechanical properties and fiber sizes of electrospun silk mats. Materials Science and Engineering C, 2013, 33, 1945-1950.	3.8	53
10	Production of silk fibroin nanoparticles using ionic liquids and highâ€power ultrasounds. Journal of Applied Polymer Science, 2015, 132, .	1.3	52
11	scCO2-foamed silk fibroin aerogel/poly(ε-caprolactone) scaffolds containing dexamethasone for bone regeneration. Journal of CO2 Utilization, 2019, 31, 51-64.	3.3	49
12	Revealing the Influence of the Degumming Process in the Properties of Silk Fibroin Nanoparticles. Polymers, 2019, 11, 2045.	2.0	47
13	Silk Fibroin Films for Corneal Endothelial Regeneration: Transplant in a Rabbit Descemet Membrane Endothelial Keratoplasty. , 2017, 58, 3357.		46
14	Silk-Fibroin and Graphene Oxide Composites Promote Human Periodontal Ligament Stem Cell Spontaneous Differentiation into Osteo/Cementoblast-Like Cells. Stem Cells and Development, 2016, 25, 1742-1754.	1.1	44
15	A photoactivated nanofiber graft material for augmented Achilles tendon repair. Lasers in Surgery and Medicine, 2012, 44, 645-652.	1.1	42
16	Biodegradable PCL/fibroin/hydroxyapatite porous scaffolds prepared by supercritical foaming for bone regeneration. International Journal of Pharmaceutics, 2017, 527, 115-125.	2.6	42
17	Antitumor properties of platinum(<scp>iv</scp>) prodrug-loaded silk fibroin nanoparticles. Dalton Transactions, 2015, 44, 13513-13521.	1.6	38
18	"In vitro―behaviour of adult mesenchymal stem cells of human bone marrow origin seeded on a novel bioactive ceramics in the Ca2SiO4–Ca3(PO4)2 system. Journal of Materials Science: Materials in Medicine, 2012, 23, 3003-3014.	1.7	28

#	Article	IF	CITATIONS
19	Effect of aqueous and particulate silk fibroin in a rat model of experimental colitis. International Journal of Pharmaceutics, 2016, 511, 1-9.	2.6	26
20	Importance of refrigeration time in the electrospinning of silk fibroin aqueous solutions. Journal of Materials Science, 2015, 50, 4879-4887.	1.7	18
21	Potential use of silkworm gut fiber braids as scaffolds for tendon and ligament tissue engineering. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2019, 107, 2209-2215.	1.6	17
22	Effect of different cocoon stifling methods on the properties of silk fibroin biomaterials. Scientific Reports, 2019, 9, 6703.	1.6	17
23	Graphene adsorbed on silk-fibroin meshes: Biomimetic and reversible conformational movements driven by reactions. Electrochimica Acta, 2016, 209, 521-528.	2.6	16
24	Biological effects of silk fibroin 3D scaffolds on stem cells from human exfoliated deciduous teeth (SHEDs). Odontology / the Society of the Nippon Dental University, 2018, 106, 125-134.	0.9	16
25	Mechanical behaviour and formation process of silkworm silk gut. Soft Matter, 2015, 11, 8981-8991.	1.2	14
26	Chemoprevention of Experimental Periodontitis in Diabetic Rats with Silk Fibroin Nanoparticles Loaded with Resveratrol. Antioxidants, 2020, 9, 85.	2.2	12
27	Photocatalytic Performance of Electrospun Silk Fibroin/ZnO Mats to Remove Pesticide Residues from Water under Natural Sunlight. Catalysts, 2020, 10, 110.	1.6	12
28	Electrochemical Synthesis and Characterization of Flavin Mononucleotideâ€Exfoliated Pristine Graphene/Polypyrrole Composites. ChemElectroChem, 2017, 4, 1487-1497.	1.7	11
29	Electrospun silk fibroin/TiO ₂ mats. Preparation, characterization and efficiency for the photocatalytic solar treatment of pesticide polluted water. RSC Advances, 2020, 10, 1917-1924.	1.7	11
30	Silkworm Gut Fiber of Bombyx mori as an Implantable and Biocompatible Light-Diffusing Fiber. International Journal of Molecular Sciences, 2016, 17, 1142.	1.8	9
31	Analysis of the Adherence of Dental Pulp Stem Cells on Two-Dimensional and Three-Dimensional Silk Fibroin-Based Biomaterials. Journal of Craniofacial Surgery, 2017, 28, 939-943.	0.3	9
32	Preparation and characterization of <i>Nephila clavipes</i> tubuliform silk gut. Soft Matter, 2019, 15, 2960-2970.	1.2	9
33	Nanoporous silk films with capillary action and size-exclusion capacity for sensitive glucose determination in whole blood. Lab on A Chip, 2021, 21, 608-615.	3.1	9
34	Products of Sericulture and Their Hypoglycemic Action Evaluated by Using the Silkworm, Bombyx mori (Lepidoptera: Bombycidae), as a Model. Insects, 2021, 12, 1059.	1.0	9
35	Purification and Kinetic Properties of Human Recombinant Dihydrofolate Reductase Produced in Bombyx mori Chrysalides. Applied Biochemistry and Biotechnology, 2010, 162, 1834-1846.	1.4	8
36	Potential of graphene for tissue engineering applications. Translational Research, 2015, 166, 399-400.	2.2	8

#	Article	IF	CITATIONS
37	The silk of gorse spider mite Tetranychus lintearius represents a novel natural source of nanoparticles and biomaterials. Scientific Reports, 2020, 10, 18471.	1.6	7
38	Nurse's A-Phase Material Enhance Adhesion, Growth and Differentiation of Human Bone Marrow-Derived Stromal Mesenchymal Stem Cells. Materials, 2017, 10, 347.	1.3	6
39	Impact of a Porous Si-Ca-P Monophasic Ceramic on Variation of Osteogenesis-Related Gene Expression of Adult Human Mesenchymal Stem Cells. Applied Sciences (Switzerland), 2018, 8, 46.	1.3	5
40	Fiber optic humidity sensor based on silk fibroin interference films. Photonics Letters of Poland, 2020, 12, 49.	0.2	4
41	First steps for the development of silk fibroin-based 3D biohybrid retina for age-related macular degeneration (AMD). Journal of Neural Engineering, 2020, 17, 055003.	1.8	3
42	Silkworm Gut Fibres from Silk Glands of Samia cynthia ricini—Potential Use as a Scaffold in Tissue Engineering. International Journal of Molecular Sciences, 2022, 23, 3888.	1.8	3
43	Silk Fibroin Pads for Whole Blood Glucose Determination. Proceedings (mdpi), 2018, 2, .	0.2	2
44	IngenierÃa tisular del tejido óseo. Diseño y desarrollo de materiales hÃbridos biológicamente activos basados en vitrocerámicas para sustitución ósea. Revista Española De CirugÃa Ortopédica Y TraumatologÃa, 2010, 54, 59-68.	0.1	1
45	Silk fibroin thin films for optical humidity sensing. , 2019, , .		1
46	Bone tissue engineering. Design and development of biologically active vitroceramic-based hybrid materials to be used as bone substitutes. Revista Española De CirugÃa Ortopédica Y TraumatologÃa, 2010, 54, 59-68.	0.1	0
47	Preliminary steps for the creation of small diameter vascular grafts. Cytotherapy, 2014, 16, S41-S42.	0.3	0
48	Unexpected high toughness of <i>Samia cynthia ricini</i> silk gut. Soft Matter, 0, , .	1.2	0